Однако для таких связанных состояний должны быть характерны очень сильные взаимодействия, которые не наблюдались в атомах или атомных ядрах. Например, пионы намного легче нуклонов и антинуклонов, поэтому если пион — это связанное состояние нуклона и антинуклона, как предполагали Ферми и Чжэньнин Янг, тогда его отрицательная энергия связи должна быть достаточно большой, чтобы скомпенсировать почти всю массу составляющих частиц. Составная природа такой частицы далеко не очевидна.
Каким образом можно определить, какие частицы являются элементарными, а какие — составными? Как только этот вопрос был сформулирован, стало понятно, что старый ответ, согласно которому частицы признаются элементарными, если от них невозможно ничего отделить, уже неверен. Пионы образуются, когда протоны сталкиваются друг с другом, а протоны и антипротоны испускаются при столкновении пионов с достаточно высокими энергиями, так что из чего состоит? Джеффри Чу и другие исследователи в 1950-х гг. превратили эту дилемму в принцип, известный теперь как «ядерная демократия», который гласит, что любая частица может считаться связанным состоянием любых других частиц, имеющих соответствующий заряд, спин и т. д. Позже, в 1975 г., эта точка зрения получила свое отражение в докладе Вернера Гейзенберга для Немецкого физического сообщества, где он отметил:
Эта новая ситуация подтверждалась в экспериментах 1950–1960-х гг. снова и снова; было найдено множество новых частиц с разными временами жизни, но ответа на вопрос «из чего состоят эти частицы?» по-прежнему не было. Протон можно получить из нейтрона и пиона, или из лямбда-гиперона и каона, или из двух нуклонов и одного антинуклона и т. д. Можем ли мы в таком случае просто утверждать, что протон состоит из непрерывной материи? Подобное утверждение будет одновременно верным и ошибочным: между элементарными частицами и составными системами нет принципиальной разницы. Вероятно, это важнейший экспериментальный результат последних 50 лет.
Задолго до того, как Гейзенберг пришел к этому слегка преувеличенному заключению, широкое распространение получило другого рода определение элементарной частицы. С позиций квантовой теории поля, разработанной Гейзенбергом, Паули, Виктором Вайскопфом и другими в период с 1926 по 1934 г., основными компонентами природы являются не частицы, а поля. Частицы, такие как электрон и фотон, представляют собой сгустки энергии электронного поля и электромагнитного поля, соответственно. Будет естественным назвать элементарной такую частицу, поле которой фигурирует в фундаментальных полевых уравнениях, или, как обычно формулируют теоретики, в функции, называемой лагранжианом системы, из которой можно вывести все полевые уравнения. Не имеет значения, является частица легкой или тяжелой, стабильной или нет: если ее поле появляется в лагранжиане, то частица элементарная, а если не появляется, тогда нет.
Это прекрасное определение, если полевые уравнения или лагранжиан известны, но на протяжении долгого времени физики их не знали. Большое количество теоретических работ в 1950-х и 1960-х гг. было посвящено попыткам найти некоторые объективные методы определения, является та или иная частица элементарной или составной, если фундаментальная теория неизвестна. Оказалось, что при определенных условиях это можно сделать в нерелятивистской квантовой механике, если элементарную частицу определить как частицу, координаты и скорость которой появляются в лагранжиане системы. Например, теорема математика Нормана Левинсона показывает, как посчитать число типов стабильных неэлементарных частиц за вычетом числа типов нестабильных элементарных частиц через изменения фазовых сдвигов при увеличении энергии движения от нуля до бесконечности. Сложность в использовании этой теоремы связана с тем, что она оперирует фазовыми сдвигами при бесконечной энергии, когда приближение нерелятивистского рассеяния, используемое при выводе теоремы, очевидно нарушается. |