Изменить размер шрифта - +

В 1960-х гг. я был сильно озадачен этой проблемой, но тогда мне только удалось показать, что дейтрон (ядро тяжелого водорода) состоит из протона и нейтрона. Не самое выдающееся достижение, — все уже и так догадались, что дейтрон является составной частицей, — однако я показал это на основе только нерелятивистской квантовой механики и данных о низкоэнергетическом нейтрон-протонном рассеянии без использования каких-то специальных допущений о лагранжиане или о процессах, происходящих при высоких энергиях. Существует классическая формула для расчета вероятности нейтрон-протонного рассеяния через массу нуклона и энергию связи дейтерия, но вывод этой формулы основан на предположении о том, что дейтрон состоит из протона и нейтрона. Если мы вместо этого предположим, что лагранжиан содержит элементарное состояние дейтрона, тогда эта формула окажется неверной и мы получим соотношение, в которое входят не только масса нуклона и энергия связи дейтерия, но еще и доля времени, когда дейтрон существует как элементарная частица. Сопоставление расчетов по этим формулам с экспериментальными данными показало, что время, в течение которого дейтрон существует как элементарная частица, составляет менее 10 % от времени его жизни. К сожалению, аргументы подобного рода не могут быть использованы для анализа сильно связанных состояний, которые возникают в некоторых теориях элементарных частиц.

Отсутствие какой-либо чисто эмпирической методики, позволяющей различать составные и элементарные частицы, не означает, что такое разделение бесполезно. В 1970-е гг. казалось, что различия между элементарными и составными частицами будут более очевидными после того, как стала общепринятой квантово-полевая теория элементарных частиц, известная как Стандартная модель. Существует шесть вариантов, или ароматов, кварков, каждый из которых имеет три цвета — это что-то вроде электрического заряда; шесть ароматов лептонов, к которым относится электрон; и 12 частиц, которые называются калибровочными бозонами. В число этих 12 частиц входит фотон, который переносит электромагнитное взаимодействие, восемь глюонов, которые переносят сильное ядерное взаимодействие, а также W<sup>+</sup>, W<sup>—</sup> и Z<sup>0</sup>-частицы, которые переносят слабое ядерное взаимодействие. Протон, нейтрон и все сотни сильно взаимодействующих частиц, обнаруженные после Второй мировой войны, в итоге оказались неэлементарными; они состоят из кварков, антикварков и глюонов. Речь не идет о том, что мы можем отделить кварки, антикварки и глюоны от этих неэлементарных частиц. Считается, что это невозможно. Точнее будет сказать, что кварки, антикварки и глюоны считаются элементарными, поскольку их поля фигурируют в уравнениях теории.

Единственной не ясной пока стороной Стандартной модели является механизм нарушения симметрии слабого и электромагнитного взаимодействий, который придает W- и Z-частицам их массы. Если бы у W- и Z-частиц не было массы, то они имели бы всего два спиновых состояния, как у невесомого фотона с его правой и левой поляризацией, тогда как массивные частицы со спином 1 имеют три спиновых состояния; таким образом, нарушение симметрии, в результате которой W- и Z-частицы получают массу, добавляет дополнительные спиновые состояния W- и Z-частицам. Теории нарушения электрослабой симметрии можно разделить на две категории в зависимости от того, являются ли дополнительные квантовые состояния элементарными, как в исходной форме Стандартной модели, или составными, как в теориях техницвета. В некоторой степени основная задача, для решения которой проектировались Большой адронный коллайдер и злополучный Сверхпроводящий суперколлайдер, заключалась в том, чтобы окончательно решить вопрос, каким частицам соответствуют дополнительные спиновые состояния W- и Z-частиц — элементарным или составным.

На этом история могла бы закончиться, но с конца 1970-х гг. наше понимание квантовой теории поля сделало еще один поворот.

Быстрый переход