Ковалевская вернулась через неделю; все задачи были решены, причем часто оригинальными методами. Вейерштрасс позже сказал, что у нее был «дар интуитивного гения». Сенат университета отказал Ковалевской в возможности учиться официально, поэтому Вейерштрасс предложил ей заниматься частным образом. Между ними началась переписка, которая затем не прерывалась до смерти Ковалевской.
Анюта к тому времени жила в Париже с молодым марксистом Виктором Жакларом. В 1871 г. Национальная гвардия провозгласила Парижскую коммуну – радикальное социалистическое правительство, которое ненадолго взяло на себя управление городом. Ленин позже сказал, что это была первая попытка пролетарской революции разбить буржуазную государственную машину. Но государственная машина не хотела, чтобы ее разбивали. Софья услышала, что Жаклара могут арестовать за его политическую деятельность, и Ковалевские направились в Париж. Когда Версальское правительство начало обстреливать Коммуну из пушек, Софья и Анюта ухаживали за ранеными. Затем Ковалевские вернулись в Берлин, но, когда Париж пал и Жаклар был арестован, они вернулись, чтобы помочь Анюте и вывезти ее благополучно в Лондон, где ей помогал также Карл Маркс. Генерал Корвин-Круковский с женой отправился в Париж, чтобы содействовать освобождению Жаклара. Они не смогли добиться официального его освобождения, но из случайного разговора узнали, что Жаклара переводят в другую тюрьму. Когда заключенных вели сквозь толпу, какая-то женщина схватила Жаклара за руку, вытащила из колонны и увела прочь. Некоторые считают, что это была Анюта (хотя она в то время уже была в Лондоне), другие – что Ковалевская, третьи – что сестра Жаклара; кое-кто думает, что это был загримированный Владимир. Жаклар бежал; Владимир дал ему свой паспорт, по которому тот и уехал в Швейцарию. С той поры, занимаясь своей любимой математикой, Ковалевская не пренебрегала и участием в политических и социальных движениях.
Вернувшись в Берлин, она с энтузиазмом погрузилась в исследования. Работа шла хорошо, а вот с браком возникли проблемы. Супруги постоянно ссорились, Владимир начал хмуро поговаривать о разводе. К 1874 г. Ковалевская написала по результатам своих исследований три статьи, каждая из которых вполне могла бы принести автору заслуженную докторскую степень. Особенно важной была первая из них: Шарль Эрмит назвал ее «первым значительным результатом в общей теории дифференциальных уравнений в частных производных». Во второй статье речь шла о динамике колец Сатурна, а третья была чисто технической и посвящена упрощению интегралов.
Дифференциальное уравнение в частных производных устанавливает связь между скоростями изменения некоторой величины и несколькими различными переменными. К примеру, уравнение теплопроводности Фурье устанавливает связь между изменениями температуры в пространственных координатах – вдоль стержня – и тем, как ее величина в каждой конкретной точке изменяется во времени. Прием, примененный Фурье для решения этого уравнения при помощи тригонометрического ряда, основан на одном специфическом свойстве: его уравнение линейно, поэтому решения можно складывать друг с другом, получая при этом новые решения. В работе 1875 г. Ковалевская доказывает существование решений для нелинейных дифференциальных уравнений в частных производных при выполнении некоторых технических условий. Эта работа расширила результат Коши 1842 г., и теперь объединенная версия того и другого называется теоремой Коши – Ковалевской.
Статья, посвященная кольцам Сатурна, была написана Ковалевской в период ее работы с Вейерштрассом, но тема его не интересовала, и все исследования она проводила самостоятельно. Софья изучала динамику вращающихся колец жидкости, которые, по предположению Лапласа, могли служить моделью колец Сатурна. Проанализировав стабильность колец в этой модели, она показала, что они не могут быть эллиптическими, как полагал Лаплас, а должны иметь яйцеобразную форму, то есть быть широкими с одного конца и более узкими с другого. |