Изменить размер шрифта - +
Но, приложив достаточные усилия, можно выделить кое-какие общие закономерности. В этой связи Пуанкаре принадлежит фундаментальный вопрос, известный как гипотеза Пуанкаре, которую на самом деле, как мы вскоре увидим, лучше было бы назвать ошибкой Пуанкаре, но будем милосердны. В 1904 г. Пуанкаре обнаружил, что некий факт, который он все время неявно полагал очевидным, не был даже верным, и задался вопросом, нельзя ли исправить ситуацию, начав с более сильной гипотезы. Сам он не смог в этом разобраться, лишь заметил, что «этот вопрос увел бы нас слишком далеко в сторону», и оставил головоломку будущим поколениям.

Чтобы понять гипотезу, о которой идет речь, мы для начала рассмотрим аналогичный вопрос в более простом контексте поверхностей: как отличить сферу от всех остальных k-торов? Пуанкаре заметил, что для этого достаточно обратить внимание на одно простое топологическое свойство. Если нарисовать петлю – замкнутую кривую – на сфере, то ее можно непрерывно деформировать, все время оставаясь на сфере, до тех пор, пока она не сожмется в точку. Поскольку в сфере нет отверстий, которые могли бы этому помешать, можно просто сжимать петлю все плотнее и плотнее. Однако на торе k-го рода с одним или несколькими отверстиями (k > 0) петлю, проходящую через отверстие, не удастся сжать в точку. Она в любом случае останется продетой в отверстие.

На языке математики утверждение «любая петля деформируется в точку» обозначается термином «гомотопическая сфера». Мы только что набросали кратко доказательство того, что, если речь идет о поверхностях, любая гомотопическая сфера топологически эквивалентна настоящей сфере. Это позволяет характеризовать сферу при помощи простого топологического свойства. Гипотетический муравей, живущий на поверхности, мог бы, в принципе, разобраться, является ли эта поверхность сферой; для этого ему надо было бы раскладывать всюду веревочные петли и стягивать их в точку. Пуанкаре предположил, что нечто подобное характеризует и трехмерную сферу, или 3-сферу, которая представляет собой трехмерное многообразие, аналогичное сферической поверхности. Это не просто заполненный шар. У шара есть граница, у 3-сферы ее нет. Можно представить себе 3-сферу как шар, поверхность которого стянута в одну точку, – в точности так же, как тонкий диск топологически превращается в сферу, если стянуть все граничные точки в одну. Представьте себе мешок со шнурком вокруг горловины. Когда вы затягиваете шнурок, граница стягивается в точку и мешок приобретает топологию сферы.

А теперь проделаем то же самое, но в условиях, когда у нас есть возможность поиграть еще с одним измерением.

Гипотеза возникла потому, что Пуанкаре в то время размышлял еще об одном топологическом свойстве, которое называется гомологией… Интуитивно это свойство менее понятно, чем стягивающиеся петли, но близко с ними связано. В определенном смысле петли, продернутые через различные отверстия k-тора, представляют независимые способы не быть сводимыми в точку. Гомология выражает эту же идею без привязки к отверстиям, которые представляют собой всего лишь визуально понятную нам интерпретацию результата. Понятие отверстия несколько обманчиво, поскольку отверстие не есть часть поверхности: это место, где данная поверхность отсутствует. В двух измерениях, благодаря теореме о классификации, сферу можно охарактеризовать по ее гомологическим свойствам (отсутствие отверстий).

В одной из ранних работ Пуанкаре принял допущение о том, что это же утверждение верно и для трех измерений. Это показалось ему настолько очевидным, что он даже не потрудился это доказать. Но затем он открыл пространство, обладающее той же гомологией, что и 3-сфера, но топологически от нее отличное. Чтобы получить такое пространство, склейте попарно противоположные грани сплошного додекаэдра, – примерно так получается плоский трехмерный тор из сплошного куба. Чтобы доказать, что это «додекаэдрическое пространство» топологически не эквивалентно трехмерной сфере, Пуанкаре и придумал гомотопию – то, что происходит с петлей при деформировании.

Быстрый переход