] не обнаружено ни одного практического приложения… Слава человеческого духа – единственная цель всей науки!»
Эта лекция оказалось столь успешной, что Гильберта уговорили повторить ее для местной радиостанции; запись сохранилась. В выступлении он подчеркивает, что задачи, решение которых ранее представлялось невозможным – к примеру, выяснение химического состава звезды, – сдаются перед новыми способами мышления. «Не существует такой вещи, как нерешаемая задача», – сказал он. А последние слова его речи звучали так: «Мы должны это знать. Мы будем это знать». Затем, ровно в тот момент, когда техник выключил запись, Гильберт рассмеялся.
В то время Гильберт был глубоко погружен в масштабную программу, суть которой состояла в том, чтобы подвести под все здание математики логический фундамент, – и эти слова свидетельствовали о его неколебимой уверенности, что данная программа будет успешно выполнена. Многое было уже сделано, но нужно было разобраться в нескольких упрямых моментах. Когда же эти вопросы были бы наконец окончательно заполированы, в распоряжении Гильберта оказался бы не просто логический базис для всей математики в целом – он смог бы доказать, что его аксиомы логически непротиворечивы.
Получилось, однако, не так, как он надеялся.
* * *
Гильберт происходил из семьи юристов. Его дед был судьей и тайным советником, его отец Отто – судьей графства. Его мать Мария (урожденная Эрдтманн) была дочерью кёнигсбергского торговца. Она питала страстный интерес к философии, астрономии и простым числам, и похоже, что ее энтузиазм передался и сыну. Когда Давиду было шесть лет, у него появилась сестра Эльзи. В школу Давид пошел в восемь лет, а до этого мать учила его дома. Школа обучала по классической программе, в ней почти не учили математике и совсем не учили физике и другим естественным наукам. Зубрежка была в порядке вещей, и везде, где требовалось заучивать наизусть неструктурированные списки фактов, Гильберт показывал слабые результаты. Сам о себе он пишет, что был «туп и глуп». Лишь один предмет выступал из общего ряда. В школьном отчете сказано: «К математике он всегда выказывал очень живой интерес и проницательный ум: он замечательным образом овладел всем преподаваемым в школе материалом и умел применять его с уверенностью и изобретательностью».
В 1880 г. Гильберт начал обучение в Университете Кёнигсберга со специализацией в математике. Он проходил курсы также в Гейдельберге у Лазаря Фукса; вернувшись в Кёнигсберг, учился у Генриха Вебера, Фердинанда фон Линдемана и Адольфа Гурвица. Гильберт близко подружился с Гурвицем и с одним из товарищей-студентов Германом Минковским. С Минковским он переписывался до конца жизни. Научным руководителем Гильберта стал Линдеман, который вскоре прославился доказательством того, что число π не удовлетворяет никакому алгебраическому уравнению с целыми коэффициентами. Он предложил Гильберту поработать над теорией инвариантов, то есть двинуться по дороге, которую проложил Буль и расширили Кэли, Силвестр и Пауль Гордан. Все они использовали вычислительные методы, и ловкость Гильберта в этих ужасных расчетах производила сильное впечатление на его друга Минковского, который писал: «Я наслаждался всеми теми процессами, через которые приходилось проходить несчастным инвариантам». В 1885 г. Гильберт получил свою докторскую степень, прочитав публичную лекцию по физике и философии.
В то время ведущим авторитетом в теории инвариантов был Гордан, а главный нерешенный вопрос состоял в том, чтобы доказать, для любого числа переменных и любой степени уравнения, существование конечного базиса. То есть конечного числа инвариантов, таких, что все остальные инварианты представляют собой их линейную комбинацию. Запишите базис – и по существу вы получите все возможные инварианты. |