Изменить размер шрифта - +
То есть конечного числа инвариантов, таких, что все остальные инварианты представляют собой их линейную комбинацию. Запишите базис – и по существу вы получите все возможные инварианты. Для квадратного уравнения с двумя переменными базис состоит из одного-единственного инварианта, и это дискриминант. Конечность базиса была доказана во многих случаях, и всегда при этом вычислялись все инварианты, а затем из них извлекался базис. Этим методом Гордан в свое время доказал наиболее общую известную теорему такого рода.

Все изменилось – вся теория инвариантов буквально встала с ног на голову – в 1888 г., когда Гильберт опубликовал короткую статью, в которой доказывал, что конечный базис всегда существует, вообще не вычисляя никаких инвариантов. Фактически он доказал, что любой подходящий набор алгебраических выражений всегда имеет конечный базис – и неважно, состоит он из инвариантов или нет. Гордан, надо сказать, не ожидал подобного ответа, и, когда Гильберт представил свою работу в Mathematische Annalen, Гордан ее отверг. «Это не математика, – сказал он. – Это теология». Гильберт пожаловался на отказ редактору Клейну и не захотел что-либо менять в статье – разве что возникнут какие-то «конкретные и неоспоримые возражения против моих рассуждений». Клейн согласился опубликовать статью в первоначальном виде. Подозреваю, что он понял доказательство лучше, чем Гордан, который оказался не в своей тарелке, когда способность к вычислениям вдруг сменилась понятийным мышлением.

Несколькими годами позже Гильберт расширил свои результаты и представил в журнал новую статью. Клейн принял ее, охарактеризовав как «важнейшую работу по общей алгебре, которую Annalen когда-либо публиковали». Что же касается Гильберта, то он теперь сделал все, что намеревался сделать в этой области. «Я определенно оставлю область инвариантов», – написал он Минковскому. И оставил.

 

* * *

Доведя до совершенства теорию инвариантов – эта область исследований, по существу, заглохла после того, как с ней поработал Гильберт, и оживилась лишь много лет спустя в еще более общем контексте, причем тогда возродился интерес одновременно и к вычислениям, и к понятиям, – Гильберт нашел для себя новую область приложения сил. В 1893 г. он начал новый проект – «Отчет о числах» (Zahlbericht). Дело в том, что Немецкое математическое общество предложило ему исследовать крупную область теории чисел – ту область, где рассматриваются алгебраические числа, то есть комплексные числа, удовлетворяющие полиномиальному уравнению с рациональными (или, что эквивалентно, целыми) коэффициентами. Примером алгебраического числа может служить  удовлетворяющий уравнению x<sup>2</sup>–2 = 0; еще один пример – мнимое число i, удовлетворяющее уравнению x<sup>2</sup> + 1 = 0. Как отмечено в главе 16, комплексные числа, которые не являются алгебраическими, называют трансцендентными; примеры таких чисел включают числа π и e, хотя это свойство трудно доказать, и долгое время вопрос оставался открытым. Трансцендентность e доказал Шарль Эрмит в 1873 г., а с трансцендентностью π разобрался Линдеман в 1882 г.

Основную роль алгебраические числа играют в теории чисел. Эйлер неявно использовал некоторые их свойства, к примеру при доказательстве Великой теоремы Ферма для кубов, но систематическое их изучение начал Гаусс. Пытаясь обобщить свой закон квадратичной взаимности на степени выше двойки, он открыл красивое расширение его на четвертые степени, основанное на алгебраических числах вида a + ib, где a и b – целые. Эта система «Гауссовых целых чисел» обладает многими особыми свойствами, в частности, имеет собственный аналог простых чисел и к нему собственную теорему о единственности разложения.

Быстрый переход