Изменить размер шрифта - +
Если бы этот предмет был поднят в  космос до тех пор, пока он не окажется вдвое дальше от центра Земли, чем когда он  находился на поверхности, то сила тяжести распределится по 2 х 2 раза большей  поверхности и станет в 2 х 2, или в 4 раза слабее. Или, если вы предпочитаете, она будет в 1/4 Раза сильнее, чем на  поверхности. Если бы предмет был поднят на  расстояние, в 10 раз превышающее расстояние от центра Земли до ее поверхности, то сила тяжести уменьшилась бы до 1/100  первоначальной силы.

Для расстояний до центра Земли и от центра Земли до Луны Ньютон использовал самые точные цифры, которые были на тот момент доступны. И теперь он смог  рассчитать, какой будет сила земного притяжения вблизи Луны.

Затем он вычислил, насколько быстро Луна должна была бы двигаться на орбите, чтобы уравновесить силу притяжения  Земли. Однако его цифры показали, что Луне пришлось бы двигаться быстрее, чем она двигалась на самом деле.

В чем была ошибка? Ньютон усомнился в том, что он был прав, предположив, что Земля притягивает предметы только к  своему центру. В конце концов, различные части Земли могли притягивать Луну в чуть разных направлениях. Ньютон не знал, как именно можно было бы учесть такую возможность, и потому отказался от этой мысли.

 

 

НОВЫЙ ТЕЛЕСКОП

 

 

Однако слава Ньютона быстро росла. Его первое важное открытие в области физики было сделано тогда, когда он позволил лучу солнечного света попасть в затемненное помещение, пройти сквозь треугольный кусок стекла, называемый призмой, и упасть на белый экран. Когда это было сделано, то оказалось, что при прохождении через  призму траектория луча искривилась, и на  экране появилась не белая точка. Вместо этого там возникла линия с привычной радугой: красный, оранжевый, желтый, зеленый,  голубой, синий и фиолетовый. Поскольку  цвета как призраки появлялись из света, казавшегося бесцветным, то радужную  линию назвали «спектр» от латинского слова, означающего «призрак».

Если один из этих цветов пропускался через еще одну призму, то луч снова  отклонялся от прямой линии, но дальнейшего расщепления цветов не происходило. А гели всей радуге позволено было попасть ил перевернутую призму, которая снова  искривляла свет, соединяя его, то снова  образовывалась белая точка. Таким образом, Ньютон первым показал, что белый свет можно разложить на много цветов, которые затем снова можно составить в белый свет.

Ньютон использовал свои открытия в  области света для усовершенствования  телескопа. Тип телескопа, изобретенный  Галилеем, позволял свету проходить через линзу, которая загибала его к точке, называемой фокусом. Чем больше света можно было собрать и загнуть к фокусу, тем большее увеличение давал телескоп. Количество  собранного света зависело от ширины линзы. Чем шире была линза, тем толще ее  приходилось делать. Однако когда свет проходил сквозь все более толстое стекло, некоторая часть драгоценного света поглощалась  стеклом, а это приводило к ухудшению  изображения.

Было и более серьезное возражение. Свет, проходивший сквозь линзу,  изгибался, искривлялся или, если использовать правильный термин, преломлялся.  Телескопы такого типа назывались рефракторными (от латинского слова, означающего  «поворачивать назад»). Свет, проходивший через такие линзы, как и свет, проходивший  через призму Ньютона, отчасти разбивался на отдельные цвета. В результате этого небесные тела, видимые в телескоп, были  окружены узкими ореолами цвета, и это тоже мешало их видеть.

Это появление цвета называлось  «хроматической аберрацией» (эти латинские слова можно перевести как «цвета  разбредаются»). Астрономам, работавшим после  Галилея, приходилось создавать очень длинные и неуклюжие телескопы, пытаясь получить большое увеличение с как можно меньшей хроматической аберрацией.

Быстрый переход