Изменить размер шрифта - +
В этом случае соотношение гипотенузы и одной из сторон равно 5/4 для более длинной стороны и 5/3 для более короткой.

Греки подошли к задаче с более общих позиций. Им важно было найти закономерность, то есть соотношение длин сторон прямоугольника и длин диагонали для любого прямоугольного треугольника.

Как гласит история, великий греческий математик Пифагор такую закономерность открыл. Он установил, что для любого прямоугольного треугольника верно следующее утверждение: сумма квадратов сторон равна квадрату гипотенузы. Это утверждение получило название теоремы Пифагора. Теорема до сих пор носит имя великого грека, хотя теперь мы знаем, что еще за 600 лет до Пифагора древним китайцам уже было известно это соотношение.

Проверим теорему для треугольника со сторонами 3 и 4. Квадрат одной из сторон равен 3 × 3 = 9, квадрат другой стороны равен 4 × 4 = 16. Сумма квадратов равна: 9 + 16 = 25, то есть квадрат гипотенузы равен 25, следовательно, гипотенуза равна 5.

Рассмотрим другой треугольник со сторонами 5 и 12.

Сумма квадратов сторон этого треугольника равна 5 × 5 + 12 × 12 = 25 + 144 = 169. Следовательно, 169 — это квадрат гипотенузы. Тогда гипотенуза равна √169, или 13, поскольку 13 × 13 = 169.

Для этого треугольника соотношение гипотенузы к стороне равно 13/5 для короткой стороны и 13/12 для длинной стороны.

 

Используя теорему Пифагора, можно найти соотношение гипотенузы и любой из сторон любого прямоугольного треугольника. Математики Древней Греции могли вздохнуть спокойно, задача была решена. Самое главное заключалось в том, что теорема распространялась на все прямоугольные треугольники, в том числе, разумеется, и на равносторонние, то есть на прямоугольные треугольники, у которых обе стороны равны. А нас сейчас интересуют именно такие треугольники.

Один из них представлен на рисунке.

 

Максимально упростим задачу и предположим, что стороны треугольника равны 1. Тогда квадрат стороны равен 1 × 1, а сумма квадратов сторон равна 1 × 1 + 1 × 1 = 2. Согласно теореме Пифагора квадрат гипотенузы равен 2, а гипотенуза равна соответственно √2.

Казалось бы, теперь грекам осталось сделать совсем немного. Надо было только найти такую дробь, которая являлась бы √2, а потом представить ее в виде соотношения целых чисел, и можно праздновать победу. Но все оказалось гораздо сложнее.

 

Ранее в этой главе мы с вами показали, что 1<sup>2</sup>/<sub>5</sub> близко к √2. Если бы оно точно равнялось √2, задача была бы решена. Тогда соотношение 1<sup>2</sup>/<sub>5</sub>/1, которое можно превратить в соотношение целых чисел 7/5, умножив верхнюю и нижнюю части дроби на 5, и было бы искомой величиной.

Но, к сожалению, 1<sup>2</sup>/<sub>5</sub>| не является точной величиной √2. Более точный ответ, 1<sup>41</sup>/<sub>100</sub>, дает нам соотношение 141/100. Еще большей точности мы достигаем, когда приравниваем √2 к 1<sup>207</sup>/<sub>500</sub>. В этом случае соотношение в целых числах будет равно 707/500. Но и 1<sup>207</sup>/<sub>500 </sub>не является точным значением корня квадратного из 2. Греческие математики потратили массу времени и сил, чтобы вычислить точное значение √2, но это им так и не удалось. Они не смогли представить соотношение √2/1 в виде соотношения целых чисел.

Наконец, великий греческий математик Евклид доказал, что, как бы ни увеличивалась точность подсчетов, получить точное значение √2 невозможно. Не существует такой дроби, которая, будучи возведена в квадрат, даст в результате 2. Говорят, что первым к этому заключению пришел Пифагор, но этот необъяснимый факт настолько поразил ученого, что он поклялся сам и взял со своих учеников клятву хранить это открытие в тайне.

Быстрый переход