Изменить размер шрифта - +
(Складываем экспоненты 4 + (-3) = 1.) Получаем ответ: 48 × 10<sup>1</sup>, или, в более удобной форме, 48 × 10<sup>2</sup>, или в виде обычного числа 480.

Как мы видим, используя экспоненциальную форму, мы значительно упрощаем задачу умножения, особенно в том случае, когда имеем дело с очень большими и очень маленькими числами.

Предположим, надо решить такую задачу. Сколько атомов водорода содержалось бы в Земле, если бы она состояла только из этих атомов водорода.

Масса Земли равна

6 000 000 000 000 000 000 000 000 000 грамм, а масса атома водорода — 0,00000000000000000000000166 грамма. Чтобы найти количество атомов водорода, надо массу Земли разделить на массу атома водорода, то есть разделить 6 000 000 000 000 000 000 000 000 000 на 0,00000000000000000000000166. Разумеется, вы можете проделать эту процедуру, если захотите, но, пожалуй, разумнее перейти к экспоненциальной форме.

При использовании экспоненциальных выражений задача сразу упрощается: (6 × 10<sup>27</sup>) : (1,66 × 10<sup>-24</sup>). Так же, как и в случае умножения, можно поделить одну неэкспоненциальную часть на другую. Таким образом, получаем частное 6 : 1,66 = 3,6 (приближенно, но достаточно для данной задачи), в то же время 10<sup>27</sup>: 10<sup>-24</sup> = 10<sup>51</sup>). Таким образом, количество атомов водорода в Земле (если бы она состояла из одних атомов водорода и имела бы ту массу, которую имеет сейчас) равнялось бы 3,6 × 10<sup>51</sup>). Или в виде обычного числа

3 600 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

грамм, если бы просто перемножили два обычных числа, как это делали в предыдущих разделах.

Не представляет трудности также возведение в степень экспоненциальных выражений и извлечение из них корня. Так, (9 × 10<sup>4</sup>)<sup>2</sup> равно 9<sup>2</sup> × (10<sup>4</sup>)<sup>2</sup>, что равно 81 × (10<sup>4</sup>)<sup>2</sup>, или 81 × 10<sup>8</sup>, или 8,1 × 10<sup>9</sup>. Точно так же можно извлечь корень из (9 × 10<sup>4</sup>). Корень квадратный из (9 × 10<sup>4</sup>) равно √9 × √10<sup>4</sup> или 3 × 10<sup>2</sup>.

 

Есть еще неясные моменты при использовании экспоненциальной формы записи чисел. Если мы имеем дело с числами с большим количеством нулей, все достаточно просто. Но предположим, что надо перемножить 6837 и 1822. Если мы запишем эти числа в экспоненциальной форме, то получим: 6,837 × 10<sup>3</sup> и 1,822 × 10<sup>3</sup>. Перемножить экспоненциальные части несложно, а вот что делать с числами 6,837 и 1,822? Мы столкнулись с той же задачей, как и при перемножении больших чисел, с той только разницей, что надо следить за положением десятичного знака. Другими словами, нам нужно представить число в такой форме, чтобы неэкспоненциальная часть была как можно короче или равнялась 1. Поскольку речь идет о десятеричной системе, нам понадобятся десятичные экспоненты, которые мы обсуждали в конце седьмой главы.

Теперь давайте подробнее рассмотрим экспоненты на основе 10. Начнем с 10<sup>0</sup> = 1 и 10<sup>1</sup> = 10. А чему равны экспоненты между 0 и 1? Например, 10<sup>0,5</sup> = 10<sup>½</sup> = √10, что приблизительно равно 3,162278. Таким же способом (но с большими сложностями) можно получить значение 10 в степени от 0 до 1. Эти величины подсчитаны и собраны в специальных справочниках в виде таблиц.

Быстрый переход