Изменить размер шрифта - +

– Архимед открыл, что если шар вписан в подходящий цилиндр, то объем шара составляет в точности две трети от объема цилиндра, а площадь его поверхности в точности равна площади криволинейной поверхности этого цилиндра. На современном языке это означает, что если радиус шара равен r, то его объем равен  а площадь поверхности – 4πr².

– Архимед был настолько великим математиком, что сумел найти логически строгое геометрическое доказательство этих фактов, которое включил в книгу «О шаре и цилиндре». Там он использовал сложный метод доказательства, известный в настоящее время как метод исчерпывания. С этим методом, однако, связаны некоторые сложности, одна из которых состоит в том, что нужно заранее знать точный ответ, верность которого вы и будете доказывать. Поэтому для ученых долгое время было загадкой: откуда Архимед узнал, каким должен быть ответ?

– Понятно, – сказал я. – А в этом давным-давно утерянном документе объясняется, как он это сделал.

– Именно. Замечательно, что метод Архимеда – это почти предвидение – в данном конкретном случае – интегрального исчисления Исаака Ньютона и Готфрида Лейбница, разработанного на 2000 лет позже. Но, как хорошо знал Архимед, идеям, использованным им в «Методе», недостает строгости. Отсюда и метод исчерпывания, к которому ему пришлось прибегнуть… Совершенно иной подход.

– Так как же он это сделал? – спросил я.

Сомс тщательно изучил палимпсест через увеличительное стекло.

– Греческий язык здесь не совсем классический и местами плохо читается, но для такого опытного лингвиста, как я, это не представляет серьезной трудности. Показывал я вам свой памфлет о расшифровке неизвестных древних текстов Средиземноморья? Напомните, чтобы показал.

Судя по всему, Архимед начал с шара, конуса и цилиндра подходящих размеров. Затем он представил тончайший срез каждой из этих фигур и представил, что эти срезы можно взвешивать: срез шара и срез конуса на весах с одной стороны, срез цилиндра – с другой. Если расстояния подобраны правильно, то массы совпадут в точности. А поскольку масса пропорциональна объему, то и объемы фигур связаны по закону рычага.

 

 

– Э-э… Напомните мне, пожалуйста, этот закон, – сказал я. – Не могу сказать, почему, но его не было в учебной программе медицинской школы.

– А должен был бы быть, – отозвался Сомс. – Он очень пригодился бы при работе с вывихнутыми суставами. Ну, не важно. Закон этот, открытый и доказанный Архимедом, утверждает, что крутящее действие, или момент, заданной массы на заданном расстоянии равен произведению массы на расстояние. Чтобы массы уравновесились, суммарный момент по часовой стрелке должен равняться суммарному моменту против часовой стрелки. Или, при соответствующей расстановке знаков плюс и минус, полный суммарный момент системы должен быть равен нулю.

– Э-э…

– Масса на заданном расстоянии уравновесит половинную массу на вдвое большем расстоянии, если, конечно, она находится на другом плече весов.

– Понятно.

– Подозреваю, что нет, но позвольте мне продолжить. Разбив объемные тела на бесконечное количество бесконечно тонких ломтиков и развесив их нужным образом на своих весах, Архимед сумел сосредоточить всю массу шара и конуса в одной точке. Ломтики цилиндра, которые представляют собой одинаковые круги, размещаются на разных расстояниях; все вместе они составляют первоначальный цилиндр. Зная, что объем конуса (а значит, и его масса) составляет одну треть от соответствующего параметра цилиндра, Архимед смог решить получившееся «уравнение» для объема шара.

– Поразительно, – сказал я.

Быстрый переход