Изменить размер шрифта - +

– Поразительно, – сказал я. – Мне это все представляется достаточно убедительным.

– Но не математику калибра Архимеда, – возразил Сомс. – Если ломтики имеют конечную толщину, в ходе процедуры возникнут небольшие, но неизбежные ошибки. Но если сделать ломтики нулевой толщины, то и масса у них окажется нулевой. Бессмысленно говорить о единственной точке равновесия, когда все задействованные массы равны нулю.

Я начал понимать сложности, связанные с описанной процедурой.

– Но ведь чем тоньше становятся ломтики, тем меньше, наверное, становятся ошибки? – рискнул я предположить.

– Это так, Ватсап, вы правы. И современный подход к интегральному исчислению превращает это утверждение в доказательство того, что процесс такого рода приводит к разумным ответам. Однако Архимеду эти идеи были неизвестны. Так что он воспользовался нестрогим методом, чтобы найти верный ответ, и это позволило ему прибегнуть к методу исчерпывания, чтобы доказать правильность ответа.

– Поразительно, – вновь сказал я. – Мы должны опубликовать палимпсест.

Сомс покачал головой.

– И рисковать навлечь на себя гнев картонариев? Я слишком высоко ценю наши с вами жизни, чтобы привлекать к себе их внимание.

– Что же нам делать?

– Мы должны поместить рукопись в безопасное место. Не вернуть обратно в библиотеку, ибо там, должно быть, уже заметили ее исчезновение и успели расставить множество хитрых ловушек. Я спрячу его в какой-нибудь другой научной библиотеке. Нет, не спрашивайте, в какой именно! Может быть, когда-нибудь позже, когда времена будут менее тревожные и влияние тайных обществ ослабнет, его найдут заново. А до той поры мы должны удовлетвориться тем, что познакомились с методом великого геометра, хотя и не смогли открыть его миру.

Он ненадолго остановился.

– Я уже рассказал вам о формулах для площади поверхности и объема шара. А вот небольшая и несложная задачка, которая может вас позабавить. Каким должен быть радиус шара в метрах, чтобы площадь его поверхности в квадратных метрах в точности равнялась его же объему в кубических метрах?

– Понятия не имею, – признался я.

– Так выясните, чего ж вы ждете! – воскликнул он.

 

Подлинную историю архимедова палимпсеста и ответ на загадку Сомса см. в главе «Загадки разгаданные».

 

Сумма четырех кубов

 

Сумма четырех квадратов, как и многие другие математические загадки, имеет давнюю историю. Греческий математик Диофант, чья «Арифметика» примерно 20 г. н. э. была первым учебником, в котором использовалась некая система алгебраических обозначений, задал вопрос, является ли каждое положительное целое число суммой четырех полных квадратов (0 разрешен). Несложно проверить это утверждение экспериментально для небольших чисел, к примеру:

 

5 = 2² + 1² + 0² + 0²;

6 = 2² + 1² + 1² + 0²;

7 = 2² + 1² + 1² + 1².

Теперь, стоило вам подумать о том, что для 8 потребуется еще одна 12, то есть пять квадратов, на помощь приходит 4:

 

8 = 2² + 2² + 0² + 0².

 

Эксперименты с более крупными числами позволяют с серьезным основанием предположить, что ответ должен быть «да», однако эта задача оставалась нерешенной более 1500 лет. Она получила известность как задача Баше по имени Клода Баше де Мезириака, опубликовавшего французский перевод «Арифметики» в 1621 г. Доказательство нашел Жозеф-Луи Лагранж в 1770 г. Не так давно были найдены более простые доказательства, основанные на абстрактной алгебре.

Быстрый переход