Изменить размер шрифта - +
Что делает нашу задачу весьма слож…

– Чепуха! – заявила леди Иакинф. – Вы можете сказать мне все.

По ее лицу было очевидно, что ничто на свете не заставит ее свернуть с избранного пути.

– Очень хорошо, – сказал Сомс, делая быстрый набросок. – Должно быть, пуд… э-э, гигантская слюнявая псина… сдвинула четыре каменных шара, изображенных здесь белым цветом, на позиции, обозначенные черным. Или, может быть, все произошло в соответствии с одной из двух других схем, которые возникают при повороте данного решения. Но вы сказали, что ориентация этой структуры не имеет значения.

Теперь я понял смысл загадочного вопроса, заданного им немного раньше.

 

 

– Чудесно! – обрадовалась леди Иакинф. – Я велю Вилликинсу поставить их обратно.

– Но разве это не нарушит условий церемонии? – поинтересовался я.

– Разумеется, доктор Ватсап. Но у нас нет никаких рациональных причин бояться каких бы то ни было неблагоприятных последствий. Этот древний запрет – лишь проявление старого… э-э… суеверия.

Месяцем позже Сомс вручил мне номер газеты Manchester Garble.

– Господи Боже! – воскликнул я. – Лорд Баске́ умер, а Баскет-холл выгорел дотла! Страховая компания, в которой было застраховано семейство, отказало в выплате, потому что действия Вредоносных сил абсолютного зла не подпадают под страховой случай. Род Баске́ разорен! Леди Иакинф помещена в лечебницу для неизлечимых душевнобольных!

Сомс кивнул.

– Чистое совпадение, я уверен, – сказал он. – Сейчас, задним числом, ясно, что мне, может быть, следовало сказать леди Иакинф насчет пуделя.

 

Цифровые кубы

 

370, 371 и 407.

Несмотря на то что эта задача вроде бы не имеет никакого математического значения, нужно обладать хорошими знаниями математики, чтобы найти все четыре ее решения, и очень хорошими, чтобы доказать, что других решений не существует.

Я попробую кратко описать один из возможных подходов.

Поскольку числа с начальными нулями исключаются, нам остается проверить всего 900 возможных комбинаций. Но их количество можно сократить. Кубы всех десяти цифр равны 0, 1, 8, 27, 64, 125, 216, 343, 512 и 729. Сумма трех кубов составляет не более 999, поэтому можно заранее исключить числа, содержащие две девятки, две восьмерки, восьмерку и девятку и т. д.

Предположим, одна из цифр – это нуль. Тогда искомое число представляет собой сумму двух кубов из нашего списка. Из 55 подобных пар лишь две, 343 + 27 = 370 и 64 + 343 = 407, обладают нужным свойством.

Далее мы можем считать, что ни одна из цифр числа не равна 0. Предположим, одна из них равна 1. Аналогичные вычисления дают нам 125 + 27 + 1 = 153 и 343 + 27 + 1 = 371.

Теперь мы можем считать, что ни одна из цифр не равна ни 0, ни 1. Список кубов, с которыми можно дальше работать, при этом немного сокращается. И т. д.

Кое-какие уловки, к примеру учет четности или нечетности чисел, также помогают сократить объем вычислений. Этот довольно медленный, но систематический подход – а Сомс рекомендует ко всему подходить систематически – приводит нас к результату без каких бы то ни было серьезных препятствий на пути.

 

Самовлюбленные числа

 

Здесь мы разрешим начальные нули:

четвертые степени: 0000 0001 1634 8208 9474;

пятые степени: 00000 00001 04150 04151 54748 92727 93084.

 

Без улик!

 

– Сомс! – воскликнул я. – Я ее решил!

– Да, убийца – графиня Лизелотта фон Финкельштейн, она ехала верхом на своем чистокровном жеребце по кличке Князь Игорь и вела в поводу трех упряжных лошадей, чтобы замаскировать следы на…

– Нет-нет, Сомс, речь не о вашем деле! Я о задаче!

Он бросил короткий взгляд на решение, которое я нацарапал на полях газеты.

Быстрый переход