– Я ее решил!
– Да, убийца – графиня Лизелотта фон Финкельштейн, она ехала верхом на своем чистокровном жеребце по кличке Князь Игорь и вела в поводу трех упряжных лошадей, чтобы замаскировать следы на…
– Нет-нет, Сомс, речь не о вашем деле! Я о задаче!
Он бросил короткий взгляд на решение, которое я нацарапал на полях газеты.
– Верно. Случайное попадание, без сомнения.
– Нет, Сомс, я вывел его путем логических рассуждений на основе принципов, которые вы вложили в мою голову. Во-первых, я понял, что сумма чисел в каждой области должна равняться 20.
– Потому что полная сумма чисел во всех ячейках составляет (1 + 2 + 3 + 4) × 4 = 40 и ее следует поделить поровну между двумя областями, – не задумываясь отозвался Сомс.
– Именно. Далее, как только я решил сосредоточиться на большей области, решение начало складываться. В этой области четыре клетки в нижней строке – там должны быть числа 1, 2, 3, 4, расположенные в каком-то порядке; каким бы ни был порядок, сумма этих чисел равна 10. Так что оставшиеся три строки все вместе в сумме тоже должны дать 10. Единственный способ этого добиться – поставить в верхнюю строку числа 1, 2, 3 в каком-то порядке, а во вторую строку – 1 и 2 в каком-то порядке; третья строка в любом случае должна содержать 1.
– Почему?
– Любое другое число на этом месте сделает сумму слишком большой.
– Вы в самом деле учитесь, Ватсап. Очень хорошо: продолжайте.
Я улыбнулся в ответ на эту слабую похвалу, ведь услышать хоть какую-нибудь похвалу из уст Сомса не легче, чем выжать воду из камня.
– Ну, хорошо… теперь несложно проверить, что способ правильного заполнения ячеек только один. Числа во второй области расставляются вынужденно: так, в крайней правой клетке верхней строки должна стоять четверка, а затем четверки должны идти вниз по диагонали; затем две тройки также вынужденно встают на свои места, и, наконец, две двойки занимают оставшиеся пустыми клетки.
Эту задачу придумали Джерард Баттерс, Фредерик Хенле, Джеймс Хенле и Колин МакГоги, а опубликована она в журнале The Mathematical Intelligencer 33 No. 3 (Fall 2011) 102–105. См. также на сайте:
Краткая история судоку
Приведем два принципиально разных решения головоломки Озанама:
Не забывайте: каждое из этих решений путем перестановок достоинств и мастей порождает 576 родственных решений, поэтому не удивляйтесь, если ваши решения выглядят не так, как приведенные. Если вы начинаете с ряда A♠ K♥ Q♦ J♣ (или можете привести свое решение в такую форму), вам достаточно подумать только о том, как преобразовать остальные три ряда.
Раз, два, три
Дело о четырех тузах
– Все это просто трюк, Ватсап. При надлежащей подготовке он работает автоматически, какую бы последовательность складывания ни выбрали зрители.
– Чертовски умно, да? – заметил я.
Сомс хмыкнул.
– Когда Гудунни готовил колоду, он поместил тузы на 1 = e, 6, 11 и 16-е места, если считать сверху вниз. Поэтому, когда из колоды выложили квадрат, тузы легли вдоль диагонали из верхнего левого угла в правый нижний. Но лежали они рубашкой кверху, поэтому вы, разумеется, и не подозревали о подвохе.
– Представьте себе, что получится, если перевернуть диагональные карты лицом кверху. Тогда весь квадрат будет выглядеть как шахматная доска с тузами вдоль большой диагонали:
– Так вот, такой расклад обладает замечательным математическим свойством. |