Изменить размер шрифта - +

 

– Прекрасно, Сомс. Хотя я, признаюсь, не понимаю…

– Идея, Ватсап, в том, что посредством этих функций мы можем выразить полезные небольшие числа при помощи только двух единиц. К примеру,

 

 – еще один способ выразить 3, использовав всего две единицы, а

 

– новый способ. – Видя мое недоумение, он добавил: – Обратите внимание,√1/ 0.1 = √10 = 3.162. Пол от этого числа равен 3, а потолок – 4.

– Ну да… – с сомнением проговорил я.

– Тогда мы идем дальше, потому что

 

 

Не говоря уже о других возможных вариантах.

Тысячи разрозненных мыслей метались в моей голове. Одна в конце концов выступила перед.

– Но, Сомс, я только сейчас понял, что

 

 

потому что √24 = 4,89, а потолок этого числа равен 5. Поэтому я смогу теперь представить 29 и 30!

Говоря это, я имел в виду просто 30, а не факториал 30, вы понимаете. Пунктуация в математике – такая морока.

Ватсап и Сомс прошли в этой задаче гораздо дальше, и позже мы увидим, чего они в конце концов достигли. Но, прежде чем продолжить эту историю, вы, может быть, захотите проверить, как далеко удастся пройти вам самостоятельно.

«Знак одного» продолжается в главе «Знак одного: часть вторая».

 

Промежутки между простыми числами

 

Вспомним, что натуральное число считается составным, если оно может быть получено перемножением двух меньших натуральных чисел, и простым, если оно не может быть получено перемножением двух меньших натуральных чисел и при этом больше 1. Число 1 является исключением: несколько веков назад оно считалось простым, но при таком соглашении разложение числа на простые множители перестает быть единственным. Так, 6 =2 × 3 = 1 × 2 × 3 = 1 × 1 × 2 × 3 и т. д. В наши дни, по этой и другим причинам, 1 считается особым числом. Это число не простое и не составное, это просто единица: натуральное число x, такое, что 1/x также является натуральным числом. Собственно, 1 – это единственная положительная единица счета.

Вот первые несколько простых чисел:

 

2 3 5 7 11 13 17 19 23 29 31 37.

 

Вообще, простых чисел бесконечно много, и они неравномерно распределены по всему множеству натуральных чисел. На протяжении долгого времени простые числа были гигантским источником вдохновения для математиков, и многие их загадки этих чисел с течением времени были решены. А многие другие по-прежнему сохраняют тайну.

В 2013 г. специалисты по теории чисел добились неожиданного прогресса в отношении двух великих загадок, связанных с простыми числами. Первая из них относится к промежуткам между последовательными простыми числами, и я расскажу о ней сейчас. Вторая последует чуть позже.

Все простые числа, за исключением числа 2, нечетные (поскольку все четные числа по определению кратны двум), поэтому два последовательных числа (за исключением пары 2, 3) не могут оба быть простыми. Однако два числа, различающиеся на 2, могут: например, пары (3, 5), (5, 7), (11, 13), (17, 19); несложно найти и еще варианты. Такие пары простых чисел называются простыми числами-близнецами.

Предположение о том, что существует бесконечное число пар простых чисел-близнецов, высказано давно, но до сих пор не доказано. До недавнего времени прогресс в этом вопросе был минимальным, но в 2013 г. Чжан Итан поразил математический мир заявлением о том, что он мог бы доказать, что существует бесконечное число пар простых чисел, которые различаются между собой не более чем на 70 млн. После этого его статья была принята к публикации ведущим журналом теоретической математики Annals of Mathematics.

Быстрый переход