Изменить размер шрифта - +
Из доказанной (будем надеяться) тернарной проблемы следует, что любое четное число есть сумма не более чем четырех простых чисел (если n – четное, то n – 3 – нечетное, а значит, сумма трех простых – q + r + s, поэтому n = 3 + q + r + s, то есть сумма четырех простых чисел). Это близко к бинарной проблеме Гольдбаха, но маловероятно, что ее удастся доказать полностью при помощи нынешних методов. Так что развиваться еще есть куда.

 

Загадки простого числа

 

В математике есть свои тайны и загадки, и ученые, которые пытаются их разгадать, зачастую похожи на детективов. Они ищут зацепки, занимаются логической дедукцией, делают выводы и ищут доказательства собственной правоты. Как в делах Сомса, важнейший шаг в исследовании – это понять, как и с какого конца начать и какая линия рассуждений может привести к успеху. Во многих случаях мы до сих пор этого не знаем. Возможно, такое заявление звучит как признание собственного невежества, и в какой-то степени это действительно так. Но это заявление означает также, что новая математика до сих пор ждет своего открытия, а значит, эта область науки не вычерпана досуха. Простые числа – богатый источник правдоподобных предположений, о верности или ошибочности которых мы ничего не знаем. Вот некоторые из них. Во всех случаях pn обозначает n-е простое число.

 

Гипотеза Аго-Джуги

Число p является простым в том, и только том случае, если pB<sub>p − 1</sub> + 1 делится на p, где B<sub>k</sub> – это k-е число Бернулли (Takashi Agoh, 1990 г.). Если вам по-настоящему интересно, информацию об этих числах можно посмотреть в Интернете. Приведем первые несколько вариантов:

 

 

А вот другое, эквивалентное утверждение: число p является простым в том, и только том случае, если

 

[1<sup>p − 1</sup> + 2<sup>p − 1</sup> + 3<sup>p − 1</sup> + … + (p − 1)<sup>p − 1</sup>] + 1

 

делится на p (Guiseppe Giuca, 1950).

Контрпример, если таковой существует, должен иметь по крайней мере 13 800 знаков (David Borwein, Jonathan Borwein, Peter Borwein and Roland Girgensohn, 1996).

 

Гипотеза Андрики

Если p<sub>n</sub> – это n-е простое число, то

 

 

(Dorin Andrica, 1986).

Имран Гори использовал данные о наибольших промежутках между простыми числами, чтобы подтвердить эту гипотезу для n вплоть до 1,3002 × 10<sup>16</sup>. На рисунке вы можете видеть зависимость √(p<sub>n</sub><sub>+1</sub>) – √p<sub>n</sub> от n для первых 200 простых чисел. Число 1 располагается в самом верху вертикальной оси, а все остальные пики, показанные на графике, – ниже. Они явно уменьшаются с увеличением n, но мы не можем быть уверены, что на каком-то очень большом n не наблюдается гигантский пик, превосходящий 1. Чтобы данная гипотеза оказалась ошибочной, где-то должен существовать особенно большой промежуток между двумя очень большими последовательными простыми числами. Это представляется весьма маловероятным, но и полностью исключить такой вариант пока невозможно.

 

 

Гипотеза Артина о первообразных корнях

Любое целое число a, не равное −1 и не являющееся полным квадратом, есть первообразный корень по модулю бесконечного числа простых чисел. То есть всякое число от 1 до p − 1 есть некая степень a минус некое число, кратное p. Существуют конкретные формулы для количественного соотношения таких простых чисел по мере их увеличения (Emil Artin, 1927).

 

Гипотеза Брокара

При n &gt; 1 существует по крайней мере четыре простых числа между p² и p²<sub>n+1</sub> (Henri Brocard, 1904).

Быстрый переход