Это много, но не бесконечное количество. Существуют ли числа еще больше?
Математикам известно, что наибольшего (целого) числа не существует. Числа могут быть сколь угодно большими. Причина проста: если бы наибольшее число существовало, его можно было бы сделать еще больше, прибавив 1. Большинство детей, освоивших десятичную запись, быстро понимают, что любое число можно сделать больше (мало того, вдесятеро больше), просто приписав к его концу еще один нолик.
Однако, несмотря на то что в принципе предела для величины числа не существует, у нас часто имеются практические ограничения, присущие выбранному нами способу записи чисел. К примеру, римляне записывали числа при помощи букв I (1), V (5), X (10), L (50), C (100), D (500) и M (1000), объединяя их в группы для получения промежуточных чисел. Так что числа 1–4 записывались I, II, III, IIII, за исключением того, что IIII часто заменяли на IV (5 минус 1). В этой системе наибольшее число, которое вы можете записать, равно:
MMMMCMXCIX = 4999,
или еще на тысячу меньше, если ограничиться только тремя M.
Однако иногда римлянам требовались числа и побольше. Чтобы обозначить миллион, они ставили черточку (римское название vinculum) над M, получая M. Вообще, черточка над буквой увеличила ее значение в тысячу раз, но такая запись использовалась редко, и даже когда использовалась, то ставилась лишь один раз, так что максимум, до чего можно было добраться таким образом, – это несколько миллионов. Ограничения этой символьной системы ясно показывают, что размер чисел, которые можно записать, всегда зависит от используемой системы представления чисел.
В настоящее время мы можем пойти значительно дальше. Миллион – это 1 000 000, так, мелочь. Мы можем получить намного более крупные числа, просто подставив в конце еще нуликов и наблюдая, как возрастает число стандартных групп по три цифры (математики нередко разделяют их тонким пробелом для наглядности). В западном мире существуют стандартные наименования для больших чисел, отражающие эту традицию: миллион, биллион, триллион, … и далее до сентиллиона. Но человек так устроен, что у него не может быть все просто, особенно в математике, поэтому эти слова имеют (или, по крайней мере, имели раньше) разные значения по разные стороны Атлантики. В США биллион равен 1 000 000 000, но в Великобритании этим словом называют 1 000 000 000 000 – то есть то, что американцы назвали бы триллионом. Однако в нынешнем взаимосвязанном мире победил американский вариант – возможно, потому, что «миллиард» (британское название для тысячи миллионов), во-первых, устаревает и, во вторых, его слишком легко спутать с «миллионом». А биллион – чудесное круглое число для международных финансов, по крайней мере до тех пор, пока мировые банки не выбросят на ветер финансового кризиса так много, что нам придется привыкать думать в триллионах.
Эти же числа можно записать и проще, если использовать степени 10. В этом случае 10<sup>6</sup> обозначает 1 с шестью нулями, то есть миллион. Число 6 здесь называют показателем экспоненты. Биллион – это 10<sup>9</sup> (миллиард), или 10<sup>12</sup> (триллион) в старомодном британском варианте. Сентиллион превращается в 10<sup>303</sup> (10<sup>600</sup> в британском варианте). Признанные расширения к стандартным названиям существуют вплоть до миллиниллиона, 10<sup>3003</sup>. Существует несколько систем таких расширений, но жизнь слишком коротка, чтобы описывать их все или хотя бы подробно описывать разницу между ними.
Еще два названия для больших чисел, которые также можно найти в большинстве словарей, – это гуголь и гугольплекс. Гуголь – это 10100 (1 со ста нулями); название придумал в свое время девятилетний племянник Джеймса Ньюмена Милтон Сиротта. Сиротта предложил и еще большее число – гуголплекс, которое определил так: «Я писал нули, пока ты не устал». |