Изменить размер шрифта - +
У кого-то друзей больше, у кого-то меньше, но в среднем их… среднее количество. В этом случае кажется интуитивно правдоподобным, что и друзья этих людей в среднем тоже имеют это же число друзей. Но так ли это?

 

 

Рассмотрим пример. Он не придуман специально так, чтобы создать нестандартную ситуацию; это первое, что пришло мне в голову. Большинство сетей ведет себя точно так же. В сети (см. выше) представлено 12 человек, линии соединяют друзей. (Считаем, что все дружбы взаимны. В социальных сетях это не всегда так, но эффект, о котором идет речь, все равно возникает.) Представим несколько ключевых показателей в табличной форме.

 

 

Жирным шрифтом я выделил в последнем столбце числа, которые оказались больше, чем число во втором столбце. Это те случаи, в которых друзья X имеют в среднем больше друзей, чем сам X. Выделены 8 из 12 чисел в этом столбце, и еще в одном случае числа там и там одинаковы.

Если усреднить числа во втором столбце, получится 3. Это означает, что среднее число друзей у человека по всей социальной сети равно 3. Но большинство записей в четвертом столбце больше этого среднего значения. Что в данном случае не так с интуицией?

Ответ дают такие люди, как Джордж и Жанна, у которых особенно (и необычно) много друзей – в данном случае 5 и 6 соответственно. По этой причине при подсчете друзей у друзей их считают намного чаще, чем остальных. И поэтому они вносят больший вклад в сумму в столбце 3 и, следовательно, в среднее значение. С другой стороны, люди с небольшим числом друзей фигурируют в подсчете гораздо реже и вносят значительно меньший вклад.

Ваши друзья – не типичный пример. Среди них гораздо лучше представлены люди с большим числом друзей, поскольку шанс на то, что вы входите в число их друзей, намного выше. А люди с небольшим числом друзей представлены куда хуже. Именно этот эффект сдвигает среднее число друзей у друзей в сторону увеличения.

В третьем столбце таблицы можно увидеть, как это происходит. Число 5 фигурирует в столбце 3 пять раз – по одному у каждого из друзей Джорджа; точно так же 6 в столбце 3 встречается шесть раз, по одному у каждого из друзей Жанны. С другой стороны, вклад Алисы в столбец 3 (не в ее собственной строке, а в тех случаях, когда она сама фигурирует в других строках как друг) составляет всего лишь две двойки: одна от Боба и одна от Вероники. Таким образом, вклад Джорджа составляет 25, а вклад Жанны – даже 36, тогда как бедняжка Алиса вносит всего лишь 4.

Кому дано, приумножится.

Во втором столбце ничего подобного не происходит: каждый вносит в среднее значение, равное 3, свою справедливую долю.

На самом деле среднее значение всех чисел в столбце 4 равно 3,78, заметно больше трех. Вероятно, мне следовало бы использовать взвешенное среднее значение: сложить все числа в столбце 3 и разделить на их количество. Тогда получится 3,55, все равно больше трех.

Надеюсь, после моего объяснения вы почувствовали себя лучше.

 

Доказательство см. в главе «Загадки разгаданные».

 

Статистика. Разве это не чудесно?

 

По статистике, каждый год в мире откладывается 42 млн крокодильих яиц. Из них проклевывается только половина. Три четверти проклюнувшихся крокодильчиков съедается хищниками за первый месяц жизни. Из оставшихся только 5 % доживают до возраста одного года – по разным причинам.

Если бы не статистика, нас всех съели бы крокодилы!

 

Приключение шестерых гостей

Из мемуаров доктора Ватсапа

 

Меня давно расстраивала откровенная нелюбовь Сомса к обедам с гостями. Он презирает светскую болтовню и чувствует себя неловко в компании женщин, особенно привлекательных женщин, таких как моя приятельница Беатрис. Но время от времени ему приходится стискивать зубы, брать быка за рога, запасаться банальностями и посещать светские мероприятия с присутствием прекрасного пола.

Быстрый переход