Он доказал, что такая последовательность сходится с вероятностью 1 (гармонический ряд соответствовал бы выпадению ООООООО… до бесконечности, что происходит с нулевой вероятностью). Однако сумма такой последовательности зависит от последовательности бросков.
Возникает вопрос: какова вероятность получения какой-то определенной суммы? В принципе, суммой может быть любое действительное число, положительное или отрицательное, так что вероятность получения любого конкретного значения равна нулю (как обычно и бывает в случае «непрерывных случайных переменных»). В этом случае следует ввести распределение (или плотность) вероятности. Эта функция определяет вероятность попадания суммы в любой заданный диапазон величин, скажем, в промежуток между числами a и b. Эта вероятность равна площади под графиком функции распределения между x = a и x = b.
Для гармонического ряда, модифицированного при помощи монетки, распределение вероятности выглядит так, как показано на рисунке. Эта функция немного напоминает знакомую колоколовидную кривую, или нормальное распределение, но ее верхняя часть приплюснута. Это симметричная кривая, где замена левой стороны на правую соответствует замене орла на решку при бросании симметричной монетки.
Эта задача – предметный урок «экспериментальной математики», в которой компьютерные расчеты используются для выдвижения интересных гипотез. Похоже, что центральный пик достигает высоты 0,25, то есть 1/4. Кроме того, значения функции при –2 и +2 равны 0,125, то есть 1/8. В 1995 г. Кент Моррисон предположил, что обе эти гипотезы верны, но в 1998 г. он изменил свое мнение и исследовал их подробнее. С точностью до десяти знаков после запятой плотность вероятности при x = 0 составляет 0,2499150393, то есть чуть меньше 1/4. Однако с той же точностью при x = 2 значение функции равно 0,1250000000, что по-прежнему очень похоже на 1/8. Но если провести расчет до 45 знаков после запятой, значение получится следующее:
0,124999999999999999999999999999999999999999764,
что отличается от 1/8 менее чем на 10<sup>−42</sup>.
В статье Шмуланда объясняется, почему эта вероятность так близка, но не равна в точности 1/8. Таким образом, очень правдоподобная гипотеза, выдвинутая на основе экспериментальных данных, оказывается ошибочной. Вот почему математики всегда настаивают на доказательствах, в точности так, как на них всегда настаивает Хемлок Сомс.
Собаки, дерущиеся в парке
Из мемуаров доктора Ватсапа
Во время обычной утренней прогулки в Равностороннем парке, что возле Мэрилбоун-роуд рядом с пабом «Пес и треугольник», я стал свидетелем любопытного инцидента и по прибытии на Бейкер-стрит, 222b не удержался от того, чтобы поделиться своими впечатлениями с коллегой.
– Сомс, я только что наблюдал любопытный…
– Инцидент. Вы видели в парке трех собак, – отозвался он, не моргнув глазом.
– Но как… конечно! На моих брюках грязь, и форма пятен и брызг указывает…
Сомс хмыкнул.
– Нет, Ватсап, мои дедуктивные выводы имеют другую основу. Они говорят мне не только, что вы видели трех собак в парке, но что эти собаки дрались.
– Так и есть! Но любопытный инцидент состоял не в этом. Наоборот, было бы любопытно, если бы собаки не стали драться.
– И правда. Нужно запомнить это замечание, Ватсап. Очень удачно сказано.
– Любопытно то, что предшествовало драке. Собаки появились одновременно в трех углах парка…
– Который представляет собой равносторонний треугольник со сторонами по 60 ярдов, – вставил Сомс.
– Ну да. И стоило собакам появиться, как каждая из них увидела противника – того, что находился от нее по часовой стрелке, – и без малейшего промедления рванула к нему. |