Изменить размер шрифта - +
Согласно Дону Пейджу, самое длинное конечное время, в явном виде рассчитанное физиками, составляет всего лишь

 

10↑10↑10↑10↑10↑1,1 лет.

 

Это время возвращения Пуанкаре для квантового состояния черной дыры с массой, равной массе всей Вселенной, то есть время, через которое эта система вернется в свое первоначальное состояние и, по существу, история повторится.

 

Число Грэма

 

Иногда математикам требуются более крупные числа, чем физикам. Не только, надо заметить, для развлечения: дело в том, что такие числа на самом деле иногда всплывают в разумных актуальных задачах. Число Грэма, названное в честь американца Рона Грэма, возникает в комбинаторике – математике подсчета различных способов перестановки объектов или выполнения каких-то условий.

В 1978 г. Грэм и Брюс Ротшильд работали над задачей о гиперкубах – многомерных аналогах куба. У квадрата 4 угла, у куба – 8, у четырехмерного гиперкуба – 16, а у n-мерного гиперкуба – 2<sup>n</sup> углов. Они соответствуют всем возможным последовательностям из n нулей и единиц в системе n координат.

Возьмем n-мерный гиперкуб и проведем линии, соединяющие все пары углов. Покрасим каждую линию либо в красный цвет, либо в синий. Для какого наименьшего n в любой схеме такой раскраски найдется по крайней мере один набор из четырех углов, лежащих на одной плоскости, таких, что все соединяющие их отрезки окрашены в один и тот же цвет?

Два упомянутых математика доказали, что такое число n существует, что далеко не очевидно. Ранее Грэм нашел более простое доказательство, но с использованием большего числа: в стрелочной нотации Кнута n, о котором идет речь, не превосходит

 

 

Здесь числа под горизонтальными фигурными скобками указывают, сколько стрелок стоит над соответствующей скобкой. Смотреть нужно снизу вверх, начиная с самой нижней строки: в предпоследнем (63-м) слое стоит 3↑↑↑↑3 стрелки. Далее, число с таким количеством стрелочек дает нам число стрелочек в следующем, 62-м слое. А число с таким количеством стрелочек – число стрелочек в 61-м слое!.. Извините, ни одно из этих чисел нельзя записать в стандартной десятичной нотации. В этом отношении они намного хуже гуголплекса. Но в этом и заключается их прелесть…

Это и есть число Грэма, и оно поистине громадно. Более чем. Величина, найденная Грэмом и Ротшильдом, меньше, но по-прежнему до безобразия велика, и объяснять ее сложнее, так что я не буду этим заниматься.

Как ни смешно, специалисты, работающие в этой области, считают, что это число можно сделать намного меньше. А именно, что годится даже n = 13. Но это пока не доказано. Грэм и Ротшильд доказали, что n не может быть меньше 6; Джефф Эксоо поднял эту величину до 11 в 2003 г.; наилучший результат на сегодняшний день гласит, что n не должно быть меньше 13, что доказал Джером Баркли в 2008 г.

 

Дополнительную информацию см. в главе «Загадки разгаданные».

 

В моей голове это не укладывается

 

Когда ученые говорят о больших числах, таких как возраст Вселенной (13,798 млрд лет, или около 4,35 секстиллиона секунд) или расстояние до ближайшей звезды (0,237 светового года, или около 2,24 трлн км), мы, как правило, произносим что-нибудь вроде «в голове не укладывается». То же можно сказать об издержках глобального финансового кризиса, составивших, по одной из верхних оценок, для экономики Великобритании 1,162 трлн фунтов стерлингов. Или, скажем, круглым счетом триллион, 10¹² фунтов стерлингов.

Миллионы, миллиарды, триллионы – для многих несведущих людей эти слова очень похожи, да и означают примерно одно и то же: они слишком велики и просто в голове не укладываются.

Быстрый переход