Однако в 1960 г. Вацлав Серпинский доказал, что существует бесконечно много нечетных k, для которых все числа вида k2<sup>n</sup> + 1 являются составными. Эти числа получили название чисел Серпинского.
В 1992 г. Джон Селфридж доказал, что 78 557 – число Серпинского; он показал, что все числа вида 78 557 × 2<sup>n</sup> + 1 делятся по крайней мере на одно из чисел 3, 5, 7, 13, 19, 37, 73. Говорят, что эти числа образуют покрывающее множество. Приведем первые десять известных чисел Серпинского:
78 557 271 129 271 577 322 523 327 739
482 719 575 041 603 713 903 983 934 909
Считается, что 78 557 – наименьшее число Серпинского, но пока этот факт никем не доказан и не опровергнут. В 2002 г. на сайте был организован поиск простых чисел вида k2<sup>n</sup> + 1, существование которых доказывало бы, что k не является числом Серпинского. Когда поиск только начинался, у математиков было 17 кандидатов на роль чисел Серпинского, не превышающих 78 557, но постепенно они были ликвидированы, так что осталось только шесть: 10 223, 21 181, 22 699, 24 737, 55 459 и 67 607. Попутно в рамках проекта было найдено несколько очень больших простых чисел.
Джеймс Джозеф кто?
Джеймс Джозеф Силвестер – английский математик, работавший с Артуром Кейли, в частности в области теории матриц и теории инвариант. Всю жизнь он очень интересовался поэзией и часто вставлял стихотворные цитаты в свои математические научные статьи. В 1841 г. он переехал в США, но вскоре вернулся обратно. В 1877 г. он вновь пересек Атлантику, занял место первого профессора математики в Университете Джона Хопкинса и основал American Journal of Mathematics, издающийся с немалым успехом и сегодня. Он вернулся в Англию в 1883 г.
Изначально его звали просто Джеймс Джозеф. Когда его старший брат эмигрировал в США, в офисе иммиграционной службы ему сказали, что у каждого должно быть по три имени: два имени и фамилия. По какой-то причине брат взял себе новую фамилию – Силвестер, сделав прежнюю вторым именем. Джеймс Джозеф последовал примеру брата.
Ограбление в Баффлхэме
Из мемуаров доктора Ватсапа
При ограблении величественного особняка лорда Баффлхэма из сейфа похитили несколько изумрудов и рубинов. Сомс, которого пригласили расследовать дело, быстро заподозрил двух гостей – леди Изабеллу Никетт и баронессу Руби Робхэм. Та и другая испытывали серьезные материальные трудности и, без сомнения, не устояли перед искушением. Но где доказательства?
Обе дамы признались, что у них есть кое-какие драгоценности, но утверждали, что это их собственность. Сомсу пока не удалось убедить инспектора Роулейда получить ордер на обыск в аристократических домах, хотя это могло бы разрешить все проблемы; пока же он не мог заглянуть в шкатулки с драгоценностями означенных дам.
– Дело, – сказал Сомс, – определяется тем, сколько драгоценностей имеют наши две дамы. Если их число совпадает с числом похищенных вещей, мы получаем последнее необходимое доказательство. Роулейд готов запросить ордер на обыск, но только если мы сможем снабдить его этими двумя числами.
– Изабелла заявила, что у нее имеются только изумруды, – пробормотал я вполголоса. – А Руби говорит, что у нее только рубины.
– В самом деле. Я уверен, что оба эти заявления правдивы. Далее, из показаний лакея следует, что число тех и других драгоценностей лежит в интервале от 2 до 101 включительно.
– Кухарка не настроена болтать о хозяйках, – заметил я. – Но мне удалось убедить ее открыть произведение этих двух чисел.
– А дворецкий, тоже неболтливый, но убежденный аргументом в виде десяти золотых соверенов, назвал мне их сумму, – отозвался Сомс. |