Изменить размер шрифта - +

С другой стороны, если поезд удаляется от слушателя, то за то время, когда первая область сжатия переместилась на метр к слушателю, возникает новая область, поезд отдалится на десятую часть метра и расстояние между двумя областями сжатия будет 1,1 метра. Частота звука составит тогда 344/1,1, или 312 раз в секунду. Теперь это ниже почти на целый тон, чем было бы слышно человеку на поезде.

Если бы мы стояли на перроне, то звук гудящего и проносящегося мимо нас поезда изменился бы внезапно: от частоты 382/с по мере приближения и прохождения к частоте 312/с по мере удаления. Это явление называется эффектом Доплера, названным так в честь австрийского физика Иоганна Кристиана Допплера (1803–1853), который первым изучил и дал правильное объяснение данному эффекту в 1842 году.

 

Высота тона также может изменяться и гораздо более тонким способом. Одна и та же нота, сыгранная с одной и той же громкостью на фортепьяно, скрипке или кларнете, звучит для нас по-разному. При наличии хотя бы минимального опыта мы можем легко определить, на каком из инструментов была сыграна данная нота. Эта разница в звуках, которые являются идентичными по высоте и громкости, определяется разницей в «качестве», или «тембре», звука.

Чтобы объяснить это, мы должны учесть, что колебания струны или любого другого устройства, производящего звук, на самом деле более сложные, чем я их описал. Струна, например, может действительно вибрировать целиком, чтобы создать вибрацию и поэтому звуковую волну данной частоты. По аналогии с поперечной волной это была бы простая синусоида и то, что называется «основным тоном». Именно основной тон мы обычно и имеем в виду, когда говорим о частоте какой-то специфической ноты.

Однако струна может вибрировать так же, как состоящая из двух половин: одна половина смещается вправо, в то время как другая половина смещается влево, и наоборот; средняя же точка струны, разграничивающая эти две половины, выступает в роли неподвижного узла. Каждая из половин струны вибрирует с частотой в два раза большей, чем частота целой струны, так что звучащий тон будет по высоте в два раза выше, чем основной тон. Струна может также вибрировать с периодом в три, четыре, пять и так далее раз меньшим, производя при этом тон в три, четыре, пять и так далее раз более высокий, чем основной. Все эти ноты более высоких частот называются «обертонами». Основной тон и различные обертоны звучат одновременно, и в реальности движение струны является их комбинацией. Основной тон остается доминирующим, но обертоны добавляют свои формы волны, и поэтому окончательная форма волны является гораздо больше сложной, чем простая синусоида. Кроме того, при различных условиях в струнах (пока мы не будем говорить о других источниках звука) обертоны могут обладать различной громкостью звука, в некоторых случаях обертон может даже звучать громче, чем основной тон, так что окончательная форма звуковой волны будет различной для разных инструментов. Разница в звучании является вполне достаточной, чтобы мы могли ее заметить при помощи наших барабанных перепонок.

Эту разницу можно усилить при помощи различных методов отбора некоторых обертонов и их последующего усиления. Давайте посмотрим, как это делается.

Один источник звуковых колебаний может заставить другой вибрировать совместно с ним, издавая ту же самую звуковую волну, что и первый, и воспроизводить тот же самый звук. Если вибрирующий камертон посадить на основание ручкой вниз, то его звук внезапно становится громче, потому что теперь вместе с ним вибрирует все основание.

Такие «вынужденные колебания» не являются даже результатом прямого физического контакта между твердыми телами. Вполне достаточно косвенного контакта сквозь воздух. Данная вибрация создает пульсацию воздуха в виде продольных волн; эти волны, в свою очередь, заставляют совместно вибрировать барабанную перепонку.

Быстрый переход