Свет звезд, проходящий очень близко от Солнца, например, подвергался бы влиянию геометрии пространства и изгибался бы по направлению к центру Солнца. Наши глаза следовали бы за лучом света, мысленно продолжая его новое направление, и мы видели бы звезду дальше от центра Солнца, чем она находится на самом деле. Это воздействие очень мало. Даже если свет проходил у самого края Солнца, видимое положение звезды сдвигалось бы всего на 1,75 секунды, а если свет проходил дальше от Солнца, сдвиг положения звезды был бы еще меньше.
Конечно, свет звезд, проходящий около Солнца, нельзя наблюдать обычным путем, разве что на протяжении нескольких минут во время полного затмения. В то время, когда была опубликована общая теория, шла Первая мировая война и ничего нельзя было сделать. Однако в 1919 году война была окончена и можно было наблюдать полное затмение с острова Принцип в Гвинейском заливе у берегов Западной Африки. Под британским покровительством на остров была выслана исследовательская экспедиция со специальной целью — проверить общую теорию.
Исследователи замерили положение близких к Солнцу звезд и сравнили с их положением полгода спустя, когда Солнце находилось на другом конце неба. Результаты исследований подтвердили общую теорию.
В конце концов теория Эйнштейна предсказала, что свет должен терять энергию, если он движется против гравитации, и приобретать ее, если «падает», так же как и любой обычный предмет; у предмета, например у мяча, эта потеря энергии будет выражаться в потере скорости. Однако свет может двигаться только с одной скоростью; следовательно, потеря энергии будет выражаться у него в уменьшении частоты и увеличении длины волны. Так, исходя из звезды, свет будет подвергаться небольшому «красному смещению» по мере потери энергии. Но это воздействие так мало, что его нельзя измерить.
Однако недавно были обнаружены такие звезды (белые карлики), которые обладают невероятной плотностью и гравитационное поле которых в тысячи раз сильнее, чем поле обычных звезд. Покидая такую звезду, свет теряет достаточно энергии, чтобы его спектральные линии демонстрировали отчетливое красное смещение. В 1925 году американский астроном Уолтер Сидни Адамс (1876–1956) смог изучить спектр белого карлика — звезды, парной звезде Синус, и подтвердить это предсказание Эйнштейна.
Общая теория относительности, таким образом, одержала три победы над прежними воззрениями на гравитацию, но все это были астрономические победы. Только в 1960 году общая теория была привнесена в лабораторную работу.
Ключ к этой лабораторной демонстрации обнаружил в 1958 году немецкий физик Рудольф Людвиг Моссбауэр (р. 1929), показавший, что при определенных обстоятельствах можно сделать кристалл, испускающий пучок гамма-лучей одинаковой длины волны. Гамма-лучи такой длины волны могут поглощаться кристаллом, похожим на тот, которым были произведены. Если гамма-лучи имеют хоть немного отличную длину волны, они не будут поглощаться. Это называется эффектом Моссбауэра.
Итак, если такой пучок гамма-лучей испускается вниз так, что он «падает» по направлению гравитации, он набирает энергию и длина его волны становится короче — если общая теория относительности верна. Падая всего лишь на сотню футов, он должен набрать достаточно энергии, чтобы длина волны гамма-лучей уменьшилась, хотя и очень незначительно, но достаточно для того, чтобы второй кристалл уже не поглощал этот пучок.
Более того, если испускающий гамма-лучи кристалл движется вверх во время испускания, то длина волны гамма-луча возрастает благодаря эффекту Допплера — Физо. Скорость, с которой кристалл движется вверх, может быть настроена ровно таким образом, чтобы нейтрализовать воздействие гравитации на падающий гамма-луч. Тогда гамма-луч опять будет поглощен кристаллом. Проводившиеся в 1960 году эксперименты с большой точностью подтвердили общую теорию относительности, но это была еще не самая впечатляющая демонстрация ее верности. |