Но с увеличением температуры меняется не только общее количество энергии. Природа испускаемых«волн тоже меняется, и это известно человеку. Для предметов с температурой батарей парового отопления, например (менее 400 °К), испускаемое излучение лежит в спектре низкочастотного инфракрасного. Ваша кожа поглощает инфракрасное излучение, и вы ощущаете его как тепло, но вы ничего не видите. Батарея в темной комнате не видна.
По мере повышения температуры предмета он не только излучает больше тепла, но и частота излучения тоже как-то меняется. К тому моменту, когда температура поднимается до 950 °К, тело уже достаточно излучает высоких частот, чтобы воздействовать на сетчатку и чтобы приобретать в наших глазах тусклый красный свет. По мере того как температура еще повышается, красный свет делается еще ярче и в конце концов становится оранжевым, потом — желтым, поскольку испускается все больше и больше света все более высоких частот.
При температуре 2000 °К предмет, уже ярко светящийся, все еще испускает много излучения в инфракрасном спектре. Только когда температура достигает 6000 °К, температуры поверхности Солнца, тогда большая часть испускаемого излучения лежит в видимой части спектра. (На самом деле, скорее всего, именно потому, что поверхность Солнца имеет определенную температуру, наши глаза и сформировались таким образом, чтобы быть чувствительными именно к этой части спектра.)
Вплоть до конца XIX века физики пытались измерить распределение излучения среди света различных частот на различных температурах. Для того чтобы сделать это точно, требовалось черное тело, поскольку только тогда можно было быть уверенным, что на каждой частоте излучается весь возможный при данной температуре свет. Для нечерного тела определенные частоты с большой долей вероятности должны были излучаться недостаточным образом; точное положение этих частот зависело от химической природы излучающего тела.
Поскольку ни одно существующее тело не поглощает всего света, падающего на него, то ни одно реальное тело не является полностью черным телом, что казалось серьезным затруднением на пути этого направления исследований. Однако в 90-х годах XIX века немецкий физик Вильгельм Вин (1864–1928) придумал оригинальный способ обойти это препятствие.
Представим себе поверхность с отверстием. Свет с любой длиной волны, попадая в это отверстие, упадет на грубую внутреннюю стену и будет большей частью поглощен. То, что не будет поглощено, будет рассеяно во всех направлениях, так что попадет на другие стены и будет поглощено там. При каждом контакте со стеной будет происходить дополнительное поглощение, и только крошечная часть света сможет отражаться достаточно долго, чтобы в конце концов снова отразиться из отверстия. Соответственно это отверстие будет выполнять роль совершенного поглотителя (в пределах разумного) и, следовательно, будет представлять собой черное тело. Если поверхность нагреть до определенной температуры и оставить таковой, то излучение, испускаемое из отверстия, будет являться излучением черного тела и распределение его частоты можно изучать.
В 1895 году Вьен произвел такое исследование и обнаружил, что при заданной температуре энергия излучалась на определенных частотах, увеличиваясь с возрастанием частоты и достигая максимума, а затем начинала уменьшаться, по мере того как частота поднималась еще выше.
Повышая температуру, Вьен обнаруживал, что на каждой частоте излучается больше энергии и что снова достигается максимум. Однако новый максимум был на большей частоте, чем предыдущий. Фактически, по мере того как он продолжал поднимать температуру, максимум частоты излучения продолжал двигаться в направлении все более и более высоких частот. Значение максимума частоты изменялось напрямую вместе с абсолютной температурой (T), так что закон Вьена можно выразить следующим образом:
где k — это константа отношения. |