Проводившиеся в 1960 году эксперименты с большой точностью подтвердили общую теорию относительности, но это была еще не самая впечатляющая демонстрация ее верности.
Неудивительно, что релятивистский взгляд на Вселенную теперь является общепринятым (по крайней мере, до следующего уточнения) среди физиков всего мира.
Глава 8.
КВАНТЫ
Излучение черного тела
Теория относительности не отрицает существования эфира. Однако она устраняет необходимость в нем, а если он не нужен, зачем о нем думать?
Так, отпадает необходимость в эфире как в мериле абсолютного движения, поскольку релятивизм начал с утверждения о том, что такого абсолютного мерила не существует, и закончил демонстрацией отсутствия его необходимости. И опять же эфир не является необходимым в качестве среды для передачи силы гравитации и обеспечения «воздействия на расстоянии». Если гравитация — вопрос геометрии пространства-времени, а не передаваемая сила, то вопрос о возможности воздействия на расстоянии не встает.
Остается еще одно возможное использование для эфира — как среды, в которой передаются световые волны через вакуум. Вторая работа Эйнштейна, изданная в 1905 году (в добавление к его статье о специальной относительности), устранила и эту возможность. Работа Эйнштейна по относительности развилась из парадокса, затрагивающего свет, который проявился в ходе эксперимента Михельсона — Морли (см. гл. 6). Вторая статья Эйнштейна развилась из другого парадокса, также имеющего дело со светом, который возник в последних десятилетиях XIX века (именно за свою вторую статью он позже получил Нобелевскую премию).
Этот второй парадокс начался с работы Кирхгофа по спектроскопии (см. гл. 4). Он показал, что вещество, впитывавшее определенные частоты света лучше, чем остальные, будет также и испускать эти же частоты лучше при нагревании до раскаленного состояния.
Тогда предположим, что кто-либо представил вещество, способное поглощать весь свет всех частот, который падает на него. Такое тело не будет отражать света никакой частоты и соответственно будет совершенно черным. Поэтому естественно называть такое вещество черным телом. Если черное тело раскалить, то, по правилу Кирхгофа, его испускание должно быть таким же совершенным, как и его поглощение. Оно должно испускать свет всех частот, поскольку оно поглощает все частоты.
Работа Кирхгофа должна была удовлетворить интерес физиков к количественным аспектам излучения и к тому, как такое излучение изменялось в зависимости от температуры. Общеизвестно было, что излучаемая телом энергия возрастает по мере его нагревания, но количественно это было измерено только в 1879 году австрийским физиком Йозефом Стефаном (1835–1893). Он показал, что вся излучаемая телом энергия возрастает пропорционально четвертой степени разницы в абсолютной температуре. (Абсолютная температура, обозначаемая °К, равна температуре по Цельсию, °С, плюс 273°; см. ч. I.)
Представим себе, к примеру, что при комнатной температуре, 300 °К, тело излучает определенное количество энергии. Если температура поднимается до 600 °К — температуры плавления свинца, — абсолютная температура удваивается и общее количество излучаемой энергии возрастает в 2<sup>4</sup> то есть в 16 раз. Если то же самое тело нагреть до температуры 6000 °К, какова она на поверхности Солнца, это в двадцать раз большая температура, чем комнатная, и излучает оно в 20<sup>4</sup>, или в 160 000 раз больше энергии.
В 1884 году Больцман (один из разработчиков кинетической теории газов) дал этому открытию твердое математическое обоснование и показал, что оно точно относится только к черным телам и что нечерные тела всегда излучают меньше тепла, чем полагается по закону Стефана. Поэтому такое отношение иногда называют законом Стефана — Больцмана. |