Изменить размер шрифта - +
Между этими пластинками положил картонные диски, пропитанные соленой водой, которые играли роль лягушачьих мускулов Гальвани или его собственных сосудов с соленой водой. Если до верхушки такого «вольтова столба» дотронуться металлическим проводом, то можно увидеть искру у его основания, если к основанию столба поднести другой конец этого провода. Фактически, если соединить проводом верхушку и основание, в нем создавался постоянный ток.

Это явление не могли полностью понять до начала следующего века, но в основе его лежал тот факт, что атомы всех веществ содержат как отрицательно заряженные электроны, так и положительно заряженные протоны. Следовательно, электрический заряд в постоянно действующем вольтовом столбе на самом деле не был создан Вольтой — он всегда существовал в веществе. Вольтов столб служил просто для того, чтобы разделять уже существующие отрицательные и положительные заряды. Легче всего описать это разделение на примере двух разных металлов.

Представим себе соприкосновение двух металлов, к примеру цинка и меди. Каждый металл содержит электроны, с большей или меньшей силой привязанные к атомам этого металла. В атомах цинка электроны с ядром связаны слабее, чем в атомах меди. На границе между металлами электроны стремятся перемещаться из цинка в медь. Можно описать этот процесс как перетягивание атомами меди электронов из атомов цинка. Это продолжается недолго, так как атомы меди накапливают отрицательный заряд (благодаря перескочившим к ним электронам), а атомы цинка — положительный.

Дальнейшее перемещение электронов из положительно заряженного цинка в отрицательно заряженную медь быстро становится невозможным, и равновесие устанавливается на том уровне, когда заряд в обоих металлах еще очень мал. Однако заряд получается достаточно большим, чтобы его можно было распознать, и, поскольку противоположные заряды разделены, между металлами возникает контактная разность потенциалов.

Сила привлечения атомами электронов изменяется пропорционально изменению температуры, однако у разных металлов это изменение различно. Представим длинную полоску из цинка и длинную полоску из меди, соединенные только двумя концами, причем имеющими различную температуру (это называется термопара).

На каждом конце полос есть контактная разность потенциалов, но с двух концов она различна. Конец А медной полосы накапливает больше электронов, чем конец В, потому что температура увеличивает его силу притяжения электронов из цинка.

Поскольку концентрация электронов в меди на конце А больше, чем на конце В, то электроны из точки А устремятся по медной полосе в точку В. Теперь в В слишком много электронов, чтобы атомы могли их удержать при обычной температуре. Поэтому они начинают перескакивать к атомам цинка. Однако конец А, потерявший часть электронов, снова получает возможность приобретать их из цинка.

Процесс будет продолжаться бесконечно — электроны будут перемещаться из края А в край В внутри медной пластины и снова из края В в край А внутри цинковой, и так до тех пор, пока поддерживается разность температуры на концах пластин. Такое термоэлектричество впервые обнаружил в 1821 году немецкий физик Томас Иоганн Зеебек (1770–1831).

Практическое применение этого явления несложно придумать. Количество постоянного тока, который проходит через термопару, зависит от температурной разницы на концах пластин. Следовательно, такое приспособление можно использовать как термометр. Так, если брать высокоплавкие металлы, например платину, то можно измерять температуры гораздо более высокие, чем те, которые способен выдержать обычный термометр. И еще, поскольку термопара улавливает и измеряет даже самые незначительные электрические потоки, то с ее помощью определяют очень слабые источники тепла, например, можно измерить тепло, исходящее от Луны или Венеры.

 

 

Химические элементы питания

 

Соединение разных металлов посредством токопроводящего раствора создает эффект, похожий на эффект термопары, но в данном случае изменение температур уже не обязательно.

Быстрый переход