Изменить размер шрифта - +

Электрический ток начали использовать почти сразу же после его открытия. Поскольку поток электронов является результатом химических реакций, неудивительно, что электроны, движущиеся через смесь различных химических субстанций, могут порождать новую химическую реакцию, причем такую, которую сложно или невозможно получить иными методами.

В 1800 году, спустя всего шесть недель после первого доклада Вольты, два английских ученых, Уильям Николсон (1753–1815) и Энтони Карлейл (1768–1840), пропустили электрический ток через воду и обнаружили, что при этом она разлагается на водород и кислород. Такой процесс, при котором через растворы или расплавы проходит электрический ток, называется электролизом («расщепление электричеством»). В результате этого процесса молекулы распадаются на простые составляющие.

В 1807-м и 1808 годах английский химик Гемфри Дэви (1778–1829), используя батареи небывалой силы, смог разложить на жидкие составляющие некоторые очень активные металлы. Ему удалось отделить три металла и впервые искусственно создать такие металлы, как натрий, калий, кальций, стронций, барий и магний, — то, что не удавалось до использования электричества еще ни одному химику.

Его ассистент, Фарадей, продолжил изучение электролиза и показал, что количество вещества, выделяющееся при электролизе, прямо пропорционально электрическому заряду, который прошел через устройство. Его законы электролиза, которые будут детально рассмотрены в III части, способствовали формированию атомистического взгляда на материю, который предложил английский химик Джон Дальтон (1766–1844). В течение следующего столетия ученые, опираясь на эти законы, открыли электрон и установили внутреннее устройство атома.

Благодаря исследованиям Фарадея кулон можно более понятным образом определить не только через общее количество заряда или общее количество электричества (точную цифру которых иногда сложно установить), но и через количество тока, приводящее к химической реакции определенного объема (а это определяется очень просто). Например, заряд в один кулон, пропущенный через раствор серебра, приводит к выделению 1,18 мг металлического серебра.

Особенно интересует химиков выделение серебра массой 107,87 г — это то, что они называют «вес серебра в грамм-атомах». Следовательно, их интересует, сколько кулонов необходимо для получения 107,87 г серебра. Но это равняется 107,870 мг. Разделим это на 1,18 мг (количество серебра, которое выделяется при 1 кулоне). Получаем 95 500 — искомое число кулонов. Это число принимают за 1 фарад тока.

Один кулон электричества выделяет определенное количество серебра (или производит другую химическую реакцию определенного объема) независимо от скорости прохождения тока через раствор. Но вот скорость выделения серебра зависит от количества кулонов, которое проходит через раствор в единицу времени. Естественно поэтому говорить о мощности потока (или о силе тока) как о количестве кулонов в секунду. Один кулон в секунду равняется одному амперу, в честь Андре Мари Ампера (1775–1836), чья работа будет описана ниже. Итак, ампер — это единица силы тока.

И тогда, если ток, проходя через раствор, образует 1,18 мг металла каждую секунду, мы говорим, что через раствор проходит 1 ампер тока.

 

 

Сопротивление

 

Сила тока между точками А и В зависит от разности потенциалов между ними. Если при разности потенциалов 20 вольт между этими точками возникает ток силой 1 ампер, то при разности потенциалов 40 вольт возникает ток силой 2 ампера, а при разности потенциалов 10 вольт — 0,5 ампера.

Прямая зависимость между разностью потенциалов и силой тока верна только при передаче тока по определенному проводнику при определенных условиях. Если природа проводника меняется, то и зависимость между разностью потенциалов и силой тока меняется.

Быстрый переход