Двумя годами позже, в 1906 году, американский изобретатель Ли Де Форест (1873–1961) добавил в трубку еще один электрод, состоящий из нескольких тонких проводков, и получился триод. Проводки являются модулятором.
С помощью модулятора можно управлять потоком электронов с гораздо большей точностью. Диод может либо открывать, либо закрывать поток, как и его водопроводный аналог. Само наличие модулятора не влияет на работу прибора, так как практически все электроны свободно пролетают сквозь зазоры между проводами, и лишь некоторые электроны остановятся, столкнувшись непосредственно с самим проводом.
Однако если подключить модулятор к отдельной электрической цепи и пропустить сквозь него небольшой отрицательный заряд, то каждый проводок начнет отталкивать электроны. То есть за счет электрического поля каждый провод станет, грубо говоря, «толще», заполняя промежутки между проводами, и большинство электронов не смогут долететь до металлической пластины. С увеличением отрицательного заряда модулятора эффект будет лишь усиливаться. И небольшого заряда модулятора достаточно, чтобы полностью разорвать электрическую цепь даже при сравнительно большем заряде пластины, при этом сам «вентиль» будет оставаться открытым.
Этот эффект можно применять для усиления слабых переменных токов. Если цепь со слабым током подключить к модулятору, то лишь небольшие изменения отрицательного потенциала модулятора приведут к большим изменениям напряжения в цепи пластина — нить. Однако эти изменения будут в точности соответствовать изменениям потенциала в цепи модулятора. То есть «сильный» ток по своим характеристикам будет в точности соответствовать «слабому». Так устроен простейший усилитель.
У изобретателей появился способ вместо «рычагов» и «шестеренок» управлять крохотными, практически невесомыми электронами. Раз электроны обладают столь малой массой, значит, они обладают такой же малой инерцией, и поэтому скорость их движения можно изменять за доли секунды. Даже самые быстрые механические устройства не могут сравниться по скорости своей работы со стремительными электронными собратьями.
Радио
Появление диодов, триодов (или электронных ламп) и их более сложных потомков привело к рождению совершенно потрясающего устройства.
Еще Герц, открывший радиоволны, сделал прототип первого передатчика и приемника. Понятно, что если увеличить мощность передатчика и чувствительность приемника, то расстояние между ними можно увеличить до нескольких метров, а то и километров. Следовательно, если передавать радиоволны длинными и короткими вспышками, имитируя азбуку Морзе, то появится новый способ связи. Радиоволны смогут заменить линии телеграфа (см. ч. 11).
В результате получится «беспроводной телеграф». Англичане так его и называют, а американцы называют его «радиотелеграф», или просто радио.
В 1894 году итальянский радиотехник Гульельмо Маркони (1874–1937), ознакомившись с опытами Герца, сделал радиосвязь реальностью. Радиоволны генерировались по методу Герца, а принимались специальным устройством, когерером. Когерер состоял из емкости с металлической стружкой. Под действием радиоволн когерер начинает проводить электричество, превращая радиоволны в электрический ток.
Маркони усложнял конструкцию приемника и передатчика и в 1895 году смог передать сигнал на 1 км, в 1896 году — на 10, в 1897 году — на 12, а в 1898 году — уже на 20 км. Маркони даже организовал коммерческую компанию по передаче «маркониграмм».
Здесь возник один парадокс. Радиоволны, как и любая другая форма электромагнитного излучения, передаются только по прямой, а поскольку Земля круглая, то по идее передача радиоволн на большие расстояния просто невозможна.
Маркони заметил, что радиоволны «огибают» землю. |