Изменить размер шрифта - +
Эти полоски и отображают шаг изменения напряжения поднимающих электронный луч электродов.

По сути, это и есть телевизионная трубка. Чтобы на экране такой трубки появилась «картинка», нужно каким-либо способом регулировать интенсивность пуска электрона. Тогда на экране станут появляться более темные или более светлые точки, которые и формируют изображение.

Первым такой способ придумал русский физик Владимир Кузьмич Зворыкин (1888–1982). В 1938 году он изобрел иконоскоп (от греч., означает «картинка» и «смотреть»). Это устройство похоже на обычный фотоаппарат, только здесь вместо пленки используется пластина с большим количеством нанесенных на нее капель сплава цезия и серебра. Под действием света цезий отдает электроны, причем интенсивность электронной эмиссии прямо пропорциональна интенсивности светового излучения, чем выше интенсивность, тем меньше электронов, и наоборот. Таким образом, на пластине остается «электронный» рисунок попадающего через линзу изображения.

Этот рисунок можно воссоздать на экране лучевой трубки: чем больше электронов осталось в одной точке пластины, тем ярче эта точка будет светиться на экране. Если же изображение на экране сменяется достаточно быстро, то создается эффект движущейся картинки.

Электронно-лучевой осциллограф также является частью устройства, использующего электромагнитные волны для определения расстояния до каких-либо объектов (аналогично применению звуковых волн в эхолокации).

Электромагнитные волны распространяются с точно известной скоростью — 300 000 километров в секунду. Если же электромагнитный импульс столкнется с преградой, то он, отражаясь от нее, вернется назад к источнику электромагнитного излучения. Остается лишь регулировать частоту волны: для проникновения сквозь туман, дождь и облачность необходимы волны более низкой частоты, а для более эффективного отражения от препятствий — более высокой. Идеальной является волна микроволнового диапазона, длиной от 0,5 до 100 см.

Зная скорость распространения волны и время, за которое сигнал долетел до препятствия и вернулся назад, можно определить расстояние до объекта. А по самому сильному отраженному сигналу можно определить направление.

Над разработкой подобного устройства работало сразу несколько ученых, но создать его первым удалось шотландскому физику Роберту Александру Вагсон-Ватту (1992–1972). Благодаря его прибору уже в 1935 году стало возможным отслеживать движение самолета по отражению микроволновых волн от его обшивки. Система получила название «радиообнаружение и определение дальности». По-английски система сокращенно называется радар.

Микроволновый импульс радара отклоняет луч осциллографа так, что на экране вместо горизонтальной линии появляется «клин» — эхо-сигнал, мощности намного меньшей мощности изначального импульса, так как возвращается лишь часть отраженных электронов, остальные разлетаются в разные стороны, отображается в виде меньшего по размерам клина. Так как электронный луч перемещается из стороны в сторону с огромной скоростью, то даже за те доли миллисекунды, которые необходимы для возвращения сигнала, между импульсом и эхо-сигналом образуется зазор. Именно по величине этого зазора возможно судить о расстоянии до объекта.

Можно поступить иначе, сконструировав специальную вращающуюся вокруг своей оси радарную антенну. Антенна будет принимать и усиливать слабые эхо-сигналы, а электронный луч вслед за вращением антенны рисовать на экране осциллографа линию от центра к краю экрана. Появляющиеся на экране яркие точки и будут отраженными от объектов эхо-сигналами. Тогда по расстоянию от точки до центра экрана можно будет судить о расстоянии до объекта, а по местоположению точки на экране — определить направление. При следующем обороте антенны вращающаяся линия «сотрет» все точки на экране и отобразит новые.

Быстрый переход