Изменить размер шрифта - +
ч. I), создавали колебания гораздо более низкой частоты, а обнаружить их гораздо проще.

Первая мировая закончилась, и Армстронг так и не довел свое устройство до совершенства. Однако применение гетеродина в радиоприемниках заметно упрощало процесс настройки на радиостанции, и в домах стали появляться первые радиоприемники.

В дальнейшем Армстронг занялся и другой проблемой радио — электростатическим «треском». Автомобильные системы зажигания, щетки электромоторов, термостаты и прочие электроприборы, а также грозовые молнии порождают электростатическое излучение. Это излучение мешает передаче радиоволн, и из приемника начинает доноситься весьма неприятный шум и треск.

Армстронг изобрел новый тип модуляции — частотный. При частотной модуляции изменяется не амплитуда несущей волны, а ее частота. При частотной модуляции внешние электромагнитные излучения практически не влияют на качество принимаемого сигнала, кроме того, частотная модуляция позволяет качественно передавать более широкий диапазон звуковых волн.

 

 

Телевидение и радиолокация

 

А сама катодно-лучевая трубка постепенно переродилась в устройство, полностью затмившее радиоприемники в сердцах людей. Все началось тогда, когда физики, используя низкую инерцию электронов, научились быстро отклонять их поток.

Представим, что анод катодно-лучевой трубки выполнен в виде полого цилиндра. Стремящийся к аноду пучок электронов пролетит сквозь цилиндр и ударится о стенку трубки, выполненную из покрытого люминофором квадратного куска стекла. В точке, куда попадет пучок, возникнет яркое свечение.

Если на пути пучка электронов поместить два электрода и подать на один из них положительный заряд, то электроны начнут к нему притягиваться, и светящаяся точка появится уже в углу экрана.

Если понижать положительный заряд постепенно, то точка медленно поползет обратно к центру экрана. Когда же заряд станет равен нулю, точка опять будет в середине экрана. Если же подать на этот же электрод отрицательный заряд, а на второй — положительный, то точка начнет двигаться в противоположную сторону. Если снова подать максимальный заряд на первый электрод, то точка снова окажется на своем прежнем месте.

Это можно повторять до бесконечности. Если же чередовать заряды электродов достаточно быстро, то точка превратится в горизонтальную линию, так как глаз не сможет уловить ее перемещение. (Нечто подобное происходит и в кино. Если прокручивать кадры пленки, сделанные последовательно, на большой скорости, то картинка «оживает».)

Теперь добавим еще одну пару электродов, на этот раз расположенных горизонтально. С их помощью можно заставить светящуюся точку прочертить вертикальную линию.

Наибольший эффект достигается при использовании сразу двух пар электродов. Например, если заставить одну пару рисовать горизонтальную линию, а вторую подключить к источнику переменного тока, то на экране появится изображение синусоиды.

Если подключить вторую пару электродов к источнику электрических звуковых волн, то на экране появится кривая, отображающая параметры звуковой волны (впрочем, продольная звуковая волна на экране будет выглядеть аналогично поперечной, см. ч. I). Именно поэтому немецкий изобретатель Карл Фердинанд Браун (1850–1918) и назвал свое устройство осциллографом («рисующий волны»).

Электронно-лучевой осциллограф способен на гораздо большее. Представим, что напряжение второй пары электродов изменяется пошагово. Тогда, нарисовав на экране горизонтальную линию, электронный луч чуть поднимется и нарисует еще одну, потом еще и так далее. Таким образом, экран можно разделить на несколько сотен линий, и чем быстрее меняется напряжение, тем быстрее «бегает» электронный луч, то есть в секунду луч может пробежать по экрану несколько раз. Однако человеческий глаз будет видеть светящийся квадрат, хотя если придвинуться к экрану вплотную, то можно разглядеть, что квадрат состоит из многих горизонтальных линий, разделенных тонкими темными полосками.

Быстрый переход