Однако значительное увеличение скорости частиц на выходе привело к сокращению их общего количества. Первый синхроциклотрон был построен в 1946 году, а несколькими годами позднее появились синхроциклотроны, позволяющие ускорять частицы до 800 Мэв.
При ускорении электронов проблема увеличения релятивистской массы появляется еще раньше. Электроны настолько легкие, что для придания хотя бы умеренного заряда их необходимо разогнать до очень высоких скоростей. Чтобы получить электрон с энергией всего лишь 1 Мэв, его нужно разогнать до 270 000 км/с, а это уже более <sup>9</sup>/<sub>10</sub> скорости света.
При такой скорости масса электрона увеличивается в 2,5 раза по сравнению с состоянием покоя. Поэтому нет особого смысла разгонять электрон с помощью циклотрона, так как даже при небольших уровнях энергии электрона синхронизация уже будет невозможна.
Решение было найдено еще до появления синхроциклотрона. В 1940 году американский физик Дональд Керст разработал ускоритель, в котором электроны двигались по «бубликообразному» сосуду. С ростом скорости движения электронов увеличивалась интенсивность магнитного поля, заставляющего электроны двигаться по кругу. Так как увеличение интенсивности магнитного поля (заставляет электроны двигаться по меньшему радиусу) было согласовано с ростом массы электрона (заставляет электроны двигаться по большему радиусу), в конечном результате электроны не меняют свою траекторию. В определенный момент интенсивность магнитного поля резко изменяют, и несколько электронов высокой энергии вылетают из ускорителя. Керст назвал свой ускоритель бетатроном, так как бета-частицы являются электронами высокой энергии естественного происхождения. Ускоритель Керста испускал электроны с энергией до 2,5 Мэв, а самый современный бетатрон позволяет ускорять электроны до 340 Мэв.
Быстро движущиеся по орбитам электроны испытывают сильное центростремительное ускорение и согласно теории Максвелла испускают энергию в виде излучения. Это ограничивает максимальное ускорение электронов в любом устройстве, где электроны движутся по кругу. (Протоны менее подвержены этому явлению, так как при одинаковом уровне энергии скорость движения протонов существенно ниже, чем у электронов, а значит, и центростремительное ускорение у них гораздо ниже.)
Поэтому сейчас принимаются усилия по строительству линейных ускорителей с длиной, достаточной (сейчас планируется строительство 3,5-километрового ускорителя) для ускорения электронов до 20 000 Мэв.
У синхроциклотрона есть один практический недостаток. Во время движения от центра к выходу частица описывает круги все большего и большего радиуса, поэтому необходимо использовать магниты, достаточные для покрытия максимального радиуса. Эти огромные магниты как раз и были узким местом при строительстве больших синхроциклотронов.
Поэтому целесообразнее было подстраивать интенсивность магнитного поля так, чтобы протоны двигались по кругу, а не по спирали. При такой «жесткой фокусировке» протоны двигаются максимально плотным и узким лучом. Построенные по такому принципу устройства получили названия протонные (и электронные) синхротроны.
К 1952 году были построены протонные синхротроны, способные разгонять частицы до нескольких Бэв. Такой синхротрон, способный испускать частицы с уровнем энергии до 6,2 Бэв, есть у университета штата Калифорния, и называется он бэватрон,
В 1960-х годах были построены два огромных ускорители с жесткой фокусировкой (один в Женеве, второй в Брукхейвене, Лонг-Айленд). Эти ускорители способны разгонять протоны до 30 Бэв и выше. Планируется построить и еще большие, поистине колоссальные по размерам ускорители. Самые большие из существующих ускорителей равны в диаметре трем городским кварталам.
Глава 10.
ИСКУССТВЕННАЯ РАДИОАКТИВНОСТЬ
Радиоизотопы
Первые атомные ядра, полученные путем искусственного превращения, были ядрами существующих в природе стабильных элементов. |