Сегодня благодаря труду ученых они возродились.
Использование изотопов в биохимии
Как только физики научились изолировать редкие изотопы и синтезировать новые, стало возможным создавать на их основе химические соединения. Если найти достаточно дешевый способ получения таких изотопов, то в химических экспериментах можно будет использовать большое количество соединений на их основе.
Первым используемым в «крупномасштабных» химических экспериментах стал стабильный водород–2, получаемый из «тяжелой воды» (см. гл. 8).
Путем органических химических реакций из тяжелой воды можно получить и другие химические соединения, молекулы которых содержат один или несколько атомов водорода–2. Если такие соединения вступают в химические реакции, то их можно определить, изолировав продукты реакции и выяснив, какие из них содержат водород–2. Химические соединения с содержанием редкого изотопа выше нормы называются мечеными соединениями, а атомы такого изотопа — индикаторами.
Этот метод особенно важен, когда меченое соединение реагирует внутри живой ткани, так как в этом случае можно проследить все имеющиеся чрезвычайно сложные трансформации. Начиная с 1935 года немецкий биохимик Рудольф Шоенгеймер (1898–1941) провел серию таких экспериментов, используя в своих исследованиях жирные молекулы, в огромном количестве присутствующие в водороде–2. Этот метод стал революцией в биохимии, так как давал возможность детально изучить химические реакции в тканях, что ранее было невозможно.
Шоенгеймер, как и другие ученые, использовал в своих исследованиях и более тяжелые изотопы — азот–15 и кислород–18, — относительное содержание которых соответственно 0,37 и 0,20. Оба этих элемента достаточно редко встречаются в природе, и большое их количество является эффективными индикаторами.
Применение радиоизотопов привело к увеличению чувствительности при использовании индикаторов, так как по сравнению со стабильными изотопами даже небольшое количество радиоактивных изотопов можно обнаружить гораздо легче и быстрее.
Радиоактивные индикаторы впервые были использованы в 1913 году венгерским физиком Георгом Хевеши (1885–1966). В то время единственными доступными радиоактивными изотопами были изотопы, составляющие различные радиоактивные ряды. Хевеши использовал свинец–210 для определения растворимости слаборастворимых соединений свинца. (Измерив уровень радиоактивности соединения до и после реакции, он определил долю присоединившегося свинца–210 и предположил, что эта доля была одинакова для всех изотопов свинца.)
В 1923 году Хевеши пометил соединение свинца изотопами свинца–212 и изучил поглощение свинца растениями. Это стало первым применением индикаторов в биологии. Однако в естественных условиях живая ткань не содержит свинца, более того, свинец является сильнейшим ядом. Поведение ткани в присутствии свинца не является нормальным. По-настоящему широко применять радиоизотопы в биологии стали лишь после Второй мировой войны, когда появилась возможность получать в достаточном количестве радиоизотопы более «полезных» элементов.
Еще одним препятствием для применения радиоизотопного анализа было то, что у наиболее характерных для ткани элементов очень мало радиоизотопов. 90% мягких тканей тела состоят из углерода, водорода, кислорода и азота. Например, самым долгоживущим радиоизотопом азота является азот–13, период полураспада которого равен всего лишь 10 минутам. Это значит, что, получив азот–13, нужно ввести его в состав подходящего химического соединения, затем каким-либо образом внедрить в ткань, где тот встретится со своей судьбой, после чего изолировать и проанализировать образовавшиеся продукты, и на все про все — не более получаса, хотя даже к этому времени уровень радиоактивности азота–13 понизится на <sup>7</sup>/<sub>8</sub>. |