Шайба, находящаяся в состоянии покоя, будет приведена в движение, а шайба, которая изначально перемещалась, изменит направление своего движения; однако оба получившихся в результате столкновения импульса в итоге составят величину, равную оригинальной.
Рассматриваемые величины останутся, по существу, неизменными, даже если эти две шайбы имели различные массы. Предположим, что одна шайба перемещалась с некоторой данной скоростью направо и имела количество движения, равное mv, в то время как другая, имеющая массу в три раза больше первой, перемещалась с той же самой скоростью налево и имела поэтому импульс, равный –3/mv. Если рассмотреть эти две, связанные вместе после столкновения «лоб в лоб», объединенные шайбы (с полной массой 4 т), то мы увидим, что они продолжили бы перемещаться влево, в направлении, в котором двигалась более массивная шайба, но суммарная скорость системы была бы равна половине начальной скорости оригинала (— v/2). Первоначальное количество движения системы было: mv + (–3mv), или –2mv. Окончательное количество движения системы будет: (4m) x (–v/2), или –2mv. Опять мы видим, что полное количество движения системы осталось неизменным.
А что получается в том случае, если количество движения, как кажется, создано «из ничего»? Давайте рассмотрим пулю, которая первоначально находится в состоянии покоя (поэтому ее количество движения равно нулю), которую внезапно выстреливают из ружья, а значит — она начинает перемещаться с высокой скоростью. Как мы знаем, пуля теперь имеет значительное количество движения, равное (mv). Однако пуля — это только часть системы. Оставшаяся часть системы — ружье — тоже должно получить импульс, равный –mv, так как оно перемещается в противоположном направлении. Если ружье обладает массой в n раз большей, чем масса пули, оно должно переместиться в противоположном направлении со скоростью, равной 1/n скорости ускоряющейся пули. Количество движения ружья (минус пуля) будет тогда: (nm)∙(–v/n), или –mv. (Если в момент выстрела ружье не было закреплено, то этот «обратный» рывок его — хорошо виден. Если же мы стреляем из ружья обыкновенным образом, то чувствуем его обратное движение в виде «отдачи».) Полное количество движения, равное импульсу пули плюс импульс ружья, как было равно нулю до выстрела, так и осталось равно нулю после выстрела, хотя в данном случае распределение количества движения среди частей системы весьма различается до и после выстрела.
Короче говоря, все эксперименты, которые мы можем провести, приводят нас к заключению, что: «Полное количество движения изолированной системы тел остается постоянным». Это выражение называется законом сохранения импульса.
Конечно, чтобы доказать обобщение, нужно не просто перечислять отдельные случаи, подтверждающие его истинность. Независимо от того, насколько часто вы экспериментируете и приходите к выводу, что количество движения сохранено, вы не можете заявить с уверенностью, что так будет всегда. В лучшем случае можно заявить, что поскольку эксперимент за экспериментом подтверждают истинность закона и поскольку в результате экспериментов не было получено данных, опровергающих этот закон, то существует большая вероятность того, что данный закон верен. Было бы гораздо лучше, если бы мы могли доказать обобщение, опираясь на другое обобщение, истинность которого уже была доказана ранее.
Например, предположите, что дна тела любой массы, перемещающиеся с любыми скоростями, сталкиваются под любым углом, с любой степенью упругости. В момент столкновения одно тело прикладывает силу (f) ко второму. В соответствии с третьим законом Ньютона второе тело прикладывает к первому телу равную и противоположную по знаку силу (–f). Сила прикладывается в течение времени, пока эти два тела остаются в контакте. Время (t) контакта, очевидно, одинаково для обоих тел, поскольку, когда первое тело перестает быть в контакте со вторым, второе также перестает быть в контакте с первым. |