Движение по кругу или любой замкнутой кривой может рассматриваться как составленное из последовательных возвращений к первоначальной точке начала движения, с каждым отдельным движением по кривой; следовательно, это ряд повторных поддвижений и он может быть назван периодическими колебаниями. Вибрация также представляет собой ряд возвращений к первоначальной точке, хотя скорее посредством движений «вперед-назад», чем в соответствии с движением по замкнутой кривой, поэтому и вибрация может также служить примером периодических колебаний.
Определить период колебаний объекта, даже когда он вибрирует в соответствии с законами, управляющими простыми гармоническими колебаниями, довольно сложно, если иметь дело непосредственно с вибрацией. В такой вибрации величины скорости, ускорения не являются постоянными, обе они изменяются в зависимости от положения в каждый данный момент времени. Поэтому при таких исследованиях ищут пути представить вибрацию посредством некоторого вида движения, включающего в себя постоянное ускорение.
Это может быть достигнуто путем перехода от вибрации к другой форме периодических колебаний — круговому движению. Объект может быть изображен как перемещающийся по кругу при постоянном внутреннем ускорении и, следовательно, как перемещение по окружности круга с постоянной скоростью.
Если рассматриваемый круг имеет радиус длины a, тогда длина его окружности равна 2πa. Если точка перемещается со скоростью v, то время t, которое требуется, чтобы сделать полное обращение (период кругового движения), равно:
Теперь если мы представим себе круг, бросающий тень на стену, то тень его боковой поверхности будет прямой линией. Точка, перемещающаяся по кругу, на тени будет казаться перемещающейся вперед и назад по прямой линии. По мере движения точки по окружности точка на тени будет совершать возвратно-поступательное движение по прямой линии. Период колебаний по окружности (уравнение 8.1) будет также равен периоду вибрации тени.
На любом из крайних положений линии-тени точка будет казаться перемещающейся очень медленно, потому что ее движение по кругу отражается на линию-тень под более или менее прямым углом, что дает очень немного поперечного движения. (А только поперечное движение обнаружит себя на тени.) По мере передвижения точки в промежуточные части круга его движение становится все более поперечным и все менее поступательным по отношению к линии, так что точка на тени кажется двигающейся все быстрее и быстрее, чем дальше она находится от крайнего положения. Таким образом, когда точка находится в самом центре, точка на окружности перемещается параллельно линии и все ее движение — поперечно. В центре теневой линии поэтому точка кажется перемещающейся самым быстрым образом. Движение точки по линии-тени напоминает движения тела при простых гармонических колебаниях, и действительно, данное движение является таковым. Следовательно, формула 8.1 представляет собой период (t) простых гармонических колебаний.
Уравнение 8.1 все еще представляет трудность для анализа, так как включает в себя скорость v, и, в то время как точка перемещается по окружности с постоянной скоростью, она перемещается по линии-тени с постоянно меняющейся скоростью. Поэтому мы должны найти, если возможно, что-то, что займет место v.
В любых простых гармонических колебаниях максимальная скорость проходит через среднюю точку между двумя экстремумами. В этот момент тело, испытывающее такое движение, находится в положении равновесия, где оно и осталось бы, если бы находилось в состоянии покоя. В этой точке тело не обладает никакой потенциальной энергией, а обладает только энергией движения, или, как ее иначе называют, «кинетической энергией». Поскольку тело перемещается дальше от своего положения равновесия, оно теряет скорость и поэтому теряет кинетическую энергию. Однако оно перемещается в положение, в котором кинетическая энергия равна нулю, зато получает энергию положения, или, как ее иначе называют, «потенциальную энергию». |