Результирующая сила постоянно уменьшается по мере снижения отвеса, так же как ускорение. Когда отвес попадает в самую нижнюю часть дуги, маятник оказывается подвешенным на совершенно вертикальной линии, и нить полностью компенсирует все гравитационное напряжение. В этой точке не существует никакого неуравновешенного гравитационного напряжения и никакого ускорения. Отвес перемещается с максимальной скоростью.
Из-за инерции отвес проходит через точку равновесия и начинает описывать дугу в другом направлении. Теперь снова имеется результирующая сила, которая замедляет его движение. Чем выше он поднимается, тем больше неуравновешенная сила тяготения и тем быстрее замедляется движение отвеса. В конечном счете его движение замедляется до нуля, и в этот момент отвес достигает точки максимального смещения. Далее начинается обратное движение вниз, через точку равновесия, до максимального смещения с другой стороны и так далее.
Это очень похоже на описание простых гармонических колебаний, за исключением того, что там щипание струны вызывает движение вперед и назад по прямой линии, а смещение маятника вызывает движение вперед и назад по дуге круга. Как нам может показаться — это не является принципиальной и существенной разницей, потому что нам кажется, почему бы не существовать периодическому вращательному движению точно так, как существует периодическое поступательное движение? И действительно — имеется достаточное количество обоих видов этих простых гармонических колебаний.
Но действительно ли движение маятника является одним из них? Во всех случаях простых гармонических колебаний типа вибрации струны, скручивающегося и раскручивающегося шнура, движения вверх и вниз натянутой струны и раскручивания и закручивания упругой спирали сила упругости находится в пределах материала, из которого изготовлен предмет, она — производное его эластичности (упругости). В случае маятника сила упругости находится вне системы в форме неуравновешенного гравитационного напряжения. Это может представлять собой принципиальную разницу. Чтобы проверить, качается ли маятник согласно свойствам простых гармонических колебаний, мы должны проверить, действительно ли является сила упругости, компенсирующая силу тяжести, прямо пропорциональной величине смещения, что служит показателем того, что в данном случае действует закон Гука (характеризующий простые гармонические колебания).
Давайте начнем со смещения. Это — длина дуги круга, по которой маятник передвигается, чтобы достигнуть некоторого положения. Длина этой дуги зависит и от длины l струны, и от величины угла (θ), на который перемещается маятник. Смещение (D) фактически равно длине струны, умноженной на угол, на который перемещается вес:
Теперь рассмотрим силу упругости. Она, конечно, зависит от силы тяжести. Полное значение натяжения нити, вызванное силой тяжести, направленной вниз, соответственно должно быть равно mg, где m — масса отвеса, a g — ускорение свободного падения. Однако отвес не двигается точно вниз, он перемещается по дуге. Это перемещение складывается из воображаемых «скатываний» по наклонной плоскости, которая изменяет свой угол наклона в каждой из точек окружности.
Эта ситуация подобна той, с которой мы столкнулись, когда рассматривали наклонные плоскости. Вообразите отвес маятника в некоторой точке его движения, когда поддерживающая его струна составляет с вертикальной линией угол, равный θ. В этой точке отвес как будто скатывается по наклонной плоскости, составленной по тангенсу к дуге колебания в этой точке. Мы могли бы изобразить такую наклонную плоскость, как часть прямоугольного треугольника. Наклонная плоскость имела бы длину L и высоту H от горизонтальной линии. Угол, который наклонная плоскость создает с горизонтальной линией, как это можно видеть из обычной геометрии, равен углу сдвига, то есть также равен θ.
Как мы узнали, максимальная сила тяготения должна быть умножена на отношение H к L, так что сила упругости (F) будет равна mg(H/L). |