Изменить размер шрифта - +

Как мы узнали, максимальная сила тяготения должна быть умножена на отношение H к L, так что сила упругости (F) будет равна mg(H/L). Отношение H к L представляет собой синус угла θ и обозначается «sin θ». Поэтому мы можем выразить силу упругости как:

 

Таким образом, отношение силы упругости к смещению в случае качающегося маятника равно (объединяем уравнения 8.5 и 8.6):

 

Теперь возникает вопрос: является ли это отношение константой, поскольку если это так, то качающийся маятник должен рассматриваться как пример простых гармонических колебаний. Масса (m) отвеса и длина струны (l) не изменяются в процессе колебания маятника, значение g также постоянно для любой данной точки поверхности Земли, так что величина mg/l также может рассматриваться в качестве константы. Остается только определить, является ли величина (sinθ)/θ также константой. Если это так, то задача решена.

 

К сожалению, данное отношение не является константой. Как мы можем легко определить, синус 30° равен ½, в то время как синус 90° равен 1. Другими словами: в то время как синус угла только удвоился, сам угол стал больше в три раза. Это означает, что (sinθ)/θ не является константой, что сила упругости нити маятника не является величиной, прямо пропорциональной смешению, и что покачивание маятника не является примером простых гармонических колебаний.

Однако если отношение (sinθ)/θ и не является константой, то оно почти постоянно для маленьких углов (10° или меньше). Поэтому, если маятник качается вперед и назад по небольшой дуге, это движение практически является примером простых гармонических колебаний.

На практике для маленьких углов (sinθ)/θ — не просто константа, это отношение равно единице. По этой причине (не забываем, что мы имеем дело с маятниками, качающимися только по маленьким дугам) мы можем устранить выражение (sinθ)/θ в уравнении 8.7 и написать:

 

в котором символ ≈ означает «приблизительно равно».

(Вы можете задать вопрос: почему же мы желаем воспользоваться приблизительным равенством, ведь наука должна оперировать только точными отношениями? Ответ таков: иногда следует удовлетвориться аппроксимацией (т. е. максимально приближенным значением) — в этом случае мы можем обращаться с маятником как с примером простых гармонических колебаний и производить некоторые другие вычисления, весьма простые, пусть даже и не совсем точные.)

Например, как мы уже определили, период (t) простых гармонических колебаний объекта равен: 2πm/k (другая форма той же записи — см. уравнение 8.4).

Символ к представляет собой отношение силы упругости к смещению, для которого в случае маятника мы нашли значение в уравнении 8.8; там оно установлено приблизительно равным mg/l При объединении уравнений 8.4 и 8.8 (и при сохранении символа приблизительного равенства) мы можем заявить, что период умеренно качающегося маятника равен:

Как вы видите, период умеренно качающегося маятника не зависит от массы отвеса, а зависит (по крайней мере, в весьма хорошем приближении) от квадратного корня из длины струны, что, собственно, в далеком XVI столетии и определил Галилео экспериментальным путем.

Присутствие в уравнении величины g — ускорения, вызванного силой тяжести, — имеет очень важное значение. Если преобразовать уравнение 8.9 так, чтобы выразить значение g, то мы получим:

 

Это дает нам гораздо более легкий метод для измерения g, чем непосредственное измерение скорости свободного падения. Длина маятника определяется легко, и его период — также. Использование маятников во времена Ньютона показало, что изменение g в зависимости от широты местности, где производятся измерения, и добавило еще одно экспериментальное подтверждение к предположению Ньютона, что Земля имеет форму сплющенного сфероида.

Быстрый переход