Этот постоянный период вибрации является большим благом для всего человечества, потому что предлагает средство для весьма точного измерения времени — подсчет колебаний, причем даже затухающих колебаний.
Теоретически любые периодические колебания делают это возможным. Первым периодическим движением, которое служит человечеству в качестве часов, было непосредственно само движение Земли; каждый поворот планеты на ее оси отмечает один день и ночь, а каждый поворот планеты относительно Солнца отмечает один цикл сезонов. К сожалению, движения Земли не могут нам предложить хороших средств измерения промежутков времени меньше чем длиною в день.
В древние времена человечество использовало апериодические движения, разбитые (как надеялись) на равные части. Они включают в себя движение тени по основанию, движение песка через узкое отверстие, капанье воды через отверстие, сокращение длины горящей свечи и так далее. Все, что можно было получить таким способом, — это довольно приблизительно равные промежутки времени; и только в середине XVII столетия появилась возможность сообщить время с точностью до часа или менее или измерить единицы времени меньшие чем час с некоторой разумной точностью.
Только когда стали использоваться периодические колебания с короткими периодами вибрации, стали возможными современные устройства для измерения времени, а вместе с ними (до очень большой степени) и вся современная наука.
Маятник
Сам Галилео весьма страдал от неспособности точно измерить короткие интервалы времени. (В некоторых случаях он использовал для замера времени свой пульс, и хотя это было периодическое явление, но, к сожалению, не очень устойчивое.) Однако хотя он непосредственно сам и не извлек выгоды из этого, он был первым, кто обнаружил периодические колебания, которые в конечном счете стали использоваться для измерения времени.
В 1583 году, когда Галилео был юношей и студентом-медиком в Университете Пизы, он однажды пошел в местный собор, чтобы помолиться. Но даже его глубокая вера (а Галилео всегда был очень набожным человеком) не смогла удержать его пытливый ум от наблюдений. Он не мог не заметить колебание паникадила в нефе. Время от времени благодаря капризу ветра оно описывало большую дугу, время от времени — меньшую, но, как показалось Галилео, период колебаний все время был тем же самым независимо от длины дуги. Он прервал свои молитвы и проверил эту догадку, рассчитав колебания при помощи своего пульса.
Вернувшись домой, Галилео продолжил эксперимент, подвесив маленькие «люстры», сделанные из «отвесов» и нитей, к потолку и позволив им раскачиваться с различным периодом колебаний. (Такие подвешенные грузы называются «маятниками» (pendulum — от латинского слова, означающего «висение» или «покачивание».) Галилео смог доказать, что период колебания не зависел от тяжести отвесов, а только от квадратного корня из длины нити. Другими словами, маятник, подвешенный на нити длиной четыре фута, имеет период колебания вдвое больший, чем такой же, но с нитью длиной в один фут.
Теперь рассмотрим маятник. Если отвес висит вертикально на своей нити, он останется неподвижным. Это — его положение равновесия. Если отвес отклонить в сторону, натяжение нити заставит его двигаться по дуге круга так, что он поднимется на более высокий уровень. Если отпустить его, то под воздействием силы тяжести он будет двигаться вниз с увеличивающейся скоростью, назад по дуге круга, к своему самому нижнему положению.
Результирующая сила, которая вызывает это движение, получается в итоге сложения силы тяжести и силы натяжения нити. По мере снижения отвеса нить становится все более и более вертикальной и компенсирует все большую часть силы тяжести. Результирующая сила постоянно уменьшается по мере снижения отвеса, так же как ускорение. Когда отвес попадает в самую нижнюю часть дуги, маятник оказывается подвешенным на совершенно вертикальной линии, и нить полностью компенсирует все гравитационное напряжение. |