Конечно, алгебраическое многообразие можно было бы называть «многомерным пространством, определенным системой алгебраических уравнений», но вы сами, вероятно, понимаете, почему так никто не говорит.
Второй многообещающий способ обобщить представления координатной геометрии состоит в том, чтобы разрешить комплексные координаты. Припомним, кстати, что в системе комплексных чисел существует число нового типа i, квадрат которого равен −1. Зачем усложнять все на свете таким странным образом? Затем, что алгебраические уравнения на множестве комплексных чисел ведут себя гораздо лучше. На множестве действительных чисел квадратное уравнение может иметь два решения или ни одного. (Оно может также иметь одно решение, но в определенном — и весьма разумном — смысле лучше считать, что одно решение повторяется дважды.) На множестве комплексных чисел квадратное уравнение всегда имеет два решения (опять же если корректно учитывать повторяющиеся решения). В некоторых случаях такое свойство может оказаться очень полезным. Можно сказать: «Решаем уравнение для седьмой переменной» — и быть уверенным, что такое решение действительно существует.
Тем не менее, хотя в этом отношении все очень удобно, некоторые свойства комплексной алгебраической геометрии без привычки воспринимаются довольно тяжело. Если говорить о действительных переменных, то там прямая может пересекать окружность в двух точках, касаться ее или проходить в стороне и не иметь с ней общих точек. В случае комплексных переменных третья возможность исчезает. Но если привыкнуть к изменениям, то окажется, что комплексные алгебраические многообразия ведут себя куда лучше, чем действительные. Иногда действительные переменные необходимы, но в большинстве случаев в комплексном контексте работать удобнее. Во всяком случае нам теперь известно, что представляет собой комплексное алгебраическое многообразие.
Как насчет слова «проективное»? Это третье обобщение, и для него требуется несколько иное представление о пространстве. Проективная геометрия выросла из интереса, который живописцы эпохи Возрождения питали к законам перспективы, и в ней отсутствует особое поведение параллельных прямых. В евклидовой геометрии две прямые либо пересекаются, либо параллельны, и тогда они не встретятся никогда, сколько их ни продолжай. А теперь вообразите себя стоящим с кистью в руке перед мольбертом на бесконечной плоскости. Все готово, палитра ждет, а перед вами две параллельные прямые уходят к закатному горизонту, как два бесконечных идеально прямых железнодорожных рельса. Что вы видите и, соответственно, что появится на вашем холсте? Вовсе не две линии, которые никак не могут сойтись. Вы увидите, как линии постепенно сближаются и на горизонте сходятся в точку.
Какой части плоскости соответствует горизонт? Той части, где встречаются параллельные линии. Но такого места нет. Горизонт на вашей картине представляет собой границу изображения плоскости. Если с окружающим миром все в порядке, то горизонт должен быть изображением границы плоскости. Но у плоскости нет границ. Она продолжается бесконечно. Все это слегка сбивает с толку, как будто часть евклидовой плоскости куда-то пропала. «Проектируя» плоскость (ту самую, с рельсами) на другую плоскость (ваш холст на мольберте), вы получаете на картине линию — горизонт, — которая не является проекцией никакой линии на изображаемой плоскости.
Существует способ избавиться от этой загадочной аномалии: добавить к евклидовой плоскости так называемую линию бесконечности, представляющую отсутствующий горизонт. После этого все сильно упрощается. Две прямые всегда встречаются в точке; прежнее представление о параллельных прямых соответствует случаю, когда две прямые встречаются в бесконечности. Эту идею после надлежащего осмысления можно совершенно разумно перевести на язык математики. Результат такого перевода и называется проективной геометрией. |