Изменить размер шрифта - +
Это число увеличивается с ростом n и, кроме того, хорошо согласуется с числовыми данными. Но даже если математикам удалось бы сделать эту формулу точной, невозможно было бы исключить возможность того, что из нее существуют очень редкие, но все же исключения, так что формула не слишком помогает.

Основное препятствие, мешающее доказать гипотезу Гольдбаха, заключается в том, что она сочетает в себе две очень разные характеристики. Простые числа определяются через умножение, а в самой гипотезе речь идет о сложении. Поэтому необычайно трудно соотнести желаемый вывод с каким бы то ни было разумным свойством простых чисел. Такое впечатление, что рычаг просто некуда вставить. Должно быть, эти слова звучали настоящей музыкой в ушах владельцев издательства Faber & Faber, когда в 2000 г. они пообещали премию в 1 000 000 долларов за доказательство гипотезы. Сделано это было ради продвижения романа Апостолоса Доксиадиса «Дядя Петрос и проблема Гольдбаха». Сроки поджимали: решение необходимо было представить до апреля 2002 г. Премия эта так никому и не досталась, что едва ли удивительно, если учесть, что проблема Гольдбаха остается нерешенной уже более 250 лет.

Гипотезу Гольдбаха часто формулируют иначе — как вопрос о сложении множеств целых чисел. Бинарная проблема Гольдбаха — простейший пример такого подхода, поскольку при этом мы складываем всего лишь два множества. Для этого нужно взять любое число из первого множества, добавить к нему любое число из второго и составить из всех таких сумм свое, третье множество. Так, сумма множеств {1, 2, 3} и {4, 5} содержит 1 + 4, 2 + 4, 3 + 4, 1 + 5, 2 + 5, 3 + 5, т. е. {5, 6, 7, 8}. Некоторые числа возникают здесь не по одному разу; к примеру, 6 = 2 + 4 = 1 + 5. Я называю подобные повторы перекрытием.

Теперь можно сформулировать бинарную гипотезу Гольдбаха заново: если сложить множество простых чисел с самим собой, то полученное в результате множество будет содержать все четные числа больше двух. Такое изменение формулировки может показаться немного банальным — так оно, кстати, и есть, — но оно помогает переместить проблему в ту область математики, где есть некоторые убедительные теоремы общего характера. Немного мешает число 2, но от него можно без труда избавиться. 2 — единственное целое простое число, и при сложении его с любым другим простым числом результат получается нечетный. Так что во всем, что касается гипотезы Гольдбаха, о двойке можно просто забыть. Однако 2 + 2 нам потребуется для представления числа 4, поэтому нам придется ограничить свое внимание четными числами начиная с 6.

В качестве эксперимента рассмотрим простые числа до 30 включительно. Таких чисел девять: {3, 5, 7, 11, 13, 17, 19, 23, 29}. При сложении этого множества с самим собой получится то, что можно увидеть на рис. 3: я выделил суммы, меньшие или равные 30 (диапазон четных чисел, в который укладываются все простые до 29) жирным шрифтом. При таком представлении результата ясно видны две простые закономерности. Во-первых, вся таблица симметрична относительно главной диагонали, поскольку a + b = b + a. И, во-вторых, выделенные числа занимают приблизительно левую верхнюю половину таблицы (см. рис. 3) над жирной (проходящей по диагонали) линией. Мало того, в середине они даже норовят вылезти за нее. Происходит это потому, что в среднем большие простые числа встречаются реже, чем маленькие. Дополнительная выпуклость посередине с лихвой компенсирует числа 32 в верхнем правом и нижнем левом углах.

 

 

Теперь мы можем сделать некоторые грубые оценки. Я мог бы быть более точным, но этого вполне достаточно. Число ячеек в таблице составляет 9 × 9 = 81. Около половины чисел в этих ячейках находятся в левом верхнем треугольнике. Благодаря симметрии все числа, кроме лежащих на диагонали, имеют симметричную пару, так что число независимых ячеек составляет примерно 81/4, т.

Быстрый переход