И дело не в том, что работа Баггинса и Крумма кажется мне незначительной. Может быть, она даже вымостила дорогу к прорывному открытию Чизбургера — Чипса. Но, по правде говоря, только специалисты, внимательно следящие за развитием событий, могут затаив дыхание ждать следующего крошечного шажка.
Поэтому в будущем я буду опускать некоторые подробности, но сейчас давайте посмотрим, как развивался процесс в случае с проблемой Гольдбаха.
Уже доказаны некоторые теоремы, помогающие продвинуться по пути решения проблемы Гольдбаха. Первый серьезный прорыв произошел в 1923 г., когда Харди и Литлвуд при помощи своих аналитических методов доказали тернарную гипотезу Гольдбаха для всех достаточно больших нечетных чисел. Однако их доказательство опиралось на другую великую проблему — обобщенную гипотезу Римана, о которой мы поговорим в главе 9. Эта проблема до сих пор остается нерешенной, так что в доказательстве Харди и Литлвуда есть существенный пробел. В 1930 г. Лев Шнирельман сумел заполнить этот пробел при помощи замысловатого варианта их собственных рассуждений, основанных на методах решета. Он доказал, что ненулевая доля всех чисел может быть представлена в виде суммы двух простых. Добавив к этому результату некоторые общие рассуждения о сложении последовательностей, он доказал, что существует такое целое число С, что любое натуральное число есть сумма не более С простых чисел. Это число получило известность как постоянная Шнирельмана. В 1937 г. аналогичные результаты получил Иван Виноградов, но его метод также не позволял сказать конкретно, насколько велики «достаточно большие» числа. В 1939 г. Константин Бороздин доказал, что они начинаются не позже чем с числа 3<sup>14 348 907</sup>. К 2002 г. Лю Минчит и Ван Тяньцзэ снизили границу «достаточно больших чисел» до e<sup>3100</sup>, что равняется примерно 2 × 10<sup>1346</sup>. Это число гораздо меньше, но все же слишком велико для того, чтобы все нижележащие числа можно было проверить перебором на компьютере.
В 1969 г. Николай Климов сумел установить, что постоянная Шнирельмана не превышает 6 млрд. Другим математикам удалось сделать более точную оценку, и в 1982 г. Ханс Ризель и Роберт Воган снизили эту цифру до 19. Хотя 19, разумеется, многим лучше 6 млрд, все признаки указывают на то, что на самом деле постоянная Шнирельмана равняется всего лишь 3. В 1995 г. Лешек Каницкий снизил верхний предел до 6 в общем случае и до 5 для нечетных чисел, но ему тоже пришлось предположить истинность гипотезы Римана. Его результаты вместе с численной проверкой гипотезы Римана вплоть до 4 × 10<sup>14</sup>, которую осуществил Йорг Рихштейн, доказали бы, что постоянная Шнирельмана не превосходит 4, но опять же при условии истинности гипотезы Римана. В 1997 г. Жан-Марк Дезуйе, Гоув Эффингер, Херман те Риле и Дмитрий Зиновьев показали, что из обобщенной гипотезы Римана (см. главу 9) следует тернарная гипотеза Гольдбаха. Иными словами, каждое нечетное число, за исключением 1, 3 и 5, является суммой трех простых чисел.
Поскольку на данный момент гипотеза Римана не доказана, имеет смысл постараться снять это условие. В 1995 г. французский математик Оливье Рамаре снизил верхнюю оценку для представления нечетных чисел до 7 без использования гипотезы Римана. Более того, он доказал более сильное утверждение: каждое четное число является суммой не более чем шести простых чисел. (Чтобы разобраться с нечетными числами, вычтем из любого нечетного 3: результат четный, поэтому он является суммой шести или менее простых. Первоначально взятое нечетное есть эта сумма плюс простое число 3, т. е. для его получения требуется не более семи простых.) Главным прорывом стало уточнение существующих оценок для некоторой части чисел определенного диапазона до двух: эти числа являются суммой двух простых. |