На это же намекает формула Хивуда для тора с g отверстиями. Сфера имеет положительную кривизну; тор, представленный в виде квадрата с тождественными противоположными сторонами (см. рис. 12 справа), имеет нулевую кривизну, а тор с двумя или более отверстиями — отрицательную. Так что между кривизной и раскрашиванием карт определенно существует какая-то связь.
За этой связью стоит одно полезное свойство кривизны: от нее очень сложно избавиться. Это похоже на кошку под ковром. Если ковер лежит на полу ровно, кошки под ним нет, но, если вы видите на ковре горб, значит, под ним кошка. Вы можете гонять эту кошку по всему ковру, но горб будет просто перемещаться с одного места на другое. Так же и кривизну можно сдвинуть, но невозможно убрать. Разве что кошка доберется до края ковра и выскочит наружу, унося кривизну с собой. Правила разрядки Хееша немного напоминают замаскированную кривизну. Они позволяют гонять электрический заряд с места на место, но не ликвидируют его. Не может ли существовать некое понятие кривизны для сети и хитрое правило разрядки, позволяющее, по существу, гонять по нему эту кривизну?
Если так, то нельзя исключить вариант, при котором вам удастся уговорить сеть раскраситься самостоятельно. Присвоить точкам (а может быть, и линиям тоже) кривизну, а затем позволить сети перераспределить ее более равномерно. Возможно, если мы все правильно подготовим, то «равномерность» будет означать как раз достаточность четырех красок. Это всего лишь идея, причем не моя, и я объяснил ее недостаточно подробно, чтобы что-нибудь понять. Но эта идея порождена интуицией какого-то математика и вселяет надежду на то, что в будущем, возможно, будет найдено более концептуальное доказательство теоремы о четырех красках — это будет потрясающая повесть, а не краткий пересказ с приложением в виде миллиарда телефонных справочников. В главе 10 мы столкнемся с аналогичной идеей в гораздо более хитроумном контексте, где она помогла решить еще более великую топологическую задачу.
5. Сферическая симметрия. Гипотеза Кеплера
Все началось со снежинки.
Снег обладает странной красотой. Он падает с небес пушистыми белыми хлопьями; он летит по ветру и образует мягкие холмы и гребни, покрывающие все вокруг; он сам по себе обретает неземные странные формы. Он холодный. По нему можно кататься на лыжах, на санках, можно лепить из него снежки и снеговиков… А если не повезет, можно оказаться погребенным под тысячетонной снежной лавиной. Исчезая, он не возвращается на небо — по крайней мере непосредственно в виде белых хлопьев. Он превращается в обычную воду, которая, конечно, может испариться и вернуться на небо, но может и течь ручьями и реками вниз, к морю, а потом долго-долго обитать в океане. Снег — форма льда, а лед — это замороженная вода.
Все сказанное не ново. Вероятно, это знали еще неандертальцы.
Снежинки ни в коем случае нельзя назвать бесформенными комками. В первозданном виде (до того, как начинается процесс таяния) многие из них представляют собой крохотные затейливые звездочки — плоские, шестигранные и симметричные. Есть и просто шестиугольники. Некоторые снежинки не настолько симметричны, некоторые отличаются заметной толщиной (т. е. имеют третье измерение), но снежинки с шестилучевой симметрией очень типичны и встречаются часто. Снежинки — кристаллы льда. Это тоже не новость, ведь невозможно, увидев кристалл, не узнать его. Но снежинки — не обычные кристаллы с плоскими гранями в виде многоугольников. Самое загадочное свойство снежинок добавляет в картину легкий штрих хаоса: несмотря на одинаковую симметрию, точная структура каждой снежинки уникальна. Говорят, не существует двух одинаковых снежинок. Я часто недоумевал: откуда они могут это знать? Но если достаточно педантично разобраться в том, что считать одинаковым, то выяснится, что цифры говорят в пользу такой позиции. |