Великое разнообразие узоров в снежинках — следствие меняющихся внешних условий. В зависимости от температуры и влажности рост кристалла может идти равномерно по всей границе, и тогда атомы с любой стороны добавляются с одной и той же частотой, и получаются простые шестиугольники. Но рост может идти с разной скоростью в разных местах, и тогда получается древовидная структура. Растущая снежинка путешествует по грозовой туче то вверх, то вниз, и условия вокруг постоянно меняются, причем случайным образом. Но сама снежинка настолько мала, что условия во всех шести ее углах в любой момент времени практически одинаковы. Поэтому все шесть лучей делают одно и то же. Каждая снежинка несет на себе отпечаток своей истории. На практике шестилучевая симметрия никогда не бывает строгой, но часто очень близка к идеалу. Лед — загадочное вещество, поэтому возможны и другие формы — пики, плоские круги, шестигранные призмы, призмы с плоскими концами. Полное описание происходящего вышло бы очень сложным, но определяющим фактором является то, как располагаются атомы в кристаллах льда. Во времена Кеплера атомная теория сводилась в лучшем случае к неопределенным предположениям древних греков. Поразительно, как далеко он сумел зайти в своих выводах, опираясь только на народные наблюдения, мысленные эксперименты и собственную интуицию.
Гипотеза Кеплера не имеет отношения к снежинкам как таковым. Все дело в небрежном замечании о том, что укладка слоев из плотно упакованных шариков, при которой шарики верхнего слоя ложатся во впадины между шариками нижнего, дает «самую плотную возможную упаковку в трех измерениях». Неформально эту гипотезу можно сформулировать так: если вы хотите упаковать много апельсинов в большой ящик, заполнив его при этом как можно плотнее, то укладывать плоды нужно так, как это делает любой торговец фруктами.
Трудность здесь не в том, чтобы найти ответ. Кеплер нам все рассказал. Трудность в том, чтобы доказать, что он был прав. За прошедшие столетия ученые собрали немало косвенных тому свидетельств. Никто не смог предложить более плотную упаковку. Именно такое расположение атомов часто встречается в кристаллах, где, как считается, плотность оптимальна для минимизации затрат энергии — это стандартный принцип, по которому созданы многие природные формы. Этого оказалось достаточно, чтобы убедить большинство физиков. И никто не смог доказать, что ничего лучшего не существует. В более простых вопросах такого рода, вроде упаковки кругов на плоскости, обнаружились скрытые глубины. Надо сказать, весь этот раздел математики сложен и полон неожиданностей. Все это тревожило математиков, хотя большинство из них тоже считали, что Кеплер дал верный ответ. В 1958 г. Амброз Роджерс описал гипотезу Кеплера как то, «во что многие математики верят, а все физики знают и так». В этой главе рассказывается, как математики обратили веру в точное знание.
Чтобы понять, что именно они сделали, нам придется как следует приглядеться к кеплеровой конструкции из шариков, известной как гранецентрированная кубическая решетка. Стоит сделать это, и начинают проявляться тонкости стоявшей перед математиками задачи. Первым на ум приходит вопрос: почему мы используем слои с квадратной решеткой? В конце концов, самой плотной упаковкой на плоскости (т. е. для одного слоя) является треугольная решетка. Дело в том, что гранецентрированную кубическую решетку можно получить и из слоев с треугольной укладкой шариков; именно в этом суть замечания Кеплера о том, что «треугольная схема укладки не может существовать без квадратной». Однако гранецентрированную кубическую решетку, сложенную из квадратных слоев, проще описывать. Кроме того, так мы убедимся, что гипотеза Кеплера не столь прямолинейна, как укладка апельсинов в ящики.
Предположим, что мы начинаем с плоского слоя шариков, уложенных треугольниками (см. рис. |