Изменить размер шрифта - +
французский астроном Алекси Бувар составлял новые таблицы, в которых отражалось положение Юпитера и Сатурна в различные моменты прошлого и будущего. У него не возникло проблем.  Математические расчеты полностью совпадали с реальными наблюдениями, которые проводились и течение многих лет.

Бувар попытался проделать то же для новой планеты, Урана, — и тут у него  начались трудности. Как астроном ни  пытался рассчитать его орбиту с помощью  гравитационной математики, он не мог добиться, чтобы результаты совпадали со всеми  наблюдениями за положением Урана, которые проводились с 1690 г., когда планету  впервые увидел и зарегистрировал Флэмстид (который, конечно, не знал, что это —  действительно планета). Различие между  расчетными положениями и  зарегистрированными реальными было невелико. По правде говоря, это различие было настолько мало, что его невозможно было заметить без  телескопа. Однако оно было достаточно  большим, чтобы не давать Бувару покоя.

Бувар решил, что старые наблюдения, проводившиеся до Гершеля, могли оказаться не совсем правильными. В конце концов,  старые телескопы были не слишком хорошими. Тогда он стал использовать только  наблюдения Гершеля и тех, кто следовал за ним, и получил орбиту, которая совпадала с  расчетной, после чего, должно быть, вздохнул с  облегчением.

Однако во время наблюдений за Ураном в течение следующих нескольких лет стало ясно, что он стал немного отходить от  рассчитанной орбиты. Это отклонение опять было очень маленьким, но в то же время достаточно большим, чтобы астрономы  ужаснулись. Неужели что-то не так с  ньютоновским законом всемирного тяготения —  после стольких лет и такого множества побед? Неужели он как-то изменяется на том  огромном расстоянии, которое отделяет Уран от Солнца?

Однако астрономы не поддались панике. Необходимо было кое-что выяснить.  Видите ли, математика Ньютона работает точно только для так называемых «задач с двумя телами». Иначе говоря, если бы во  Вселенной существовало всего два тела, например Земля и Солнце, то гравитационные  формулы идеально описывали бы движение  Земли вокруг Солнца.

Однако поскольку тел во Вселенной больше, чем два, математики Ньютона не достаточно для того, чтобы дать точное  решение.

А ведь во Вселенной находится  бессчетное количество тел. Как же определить  планетные орбиты с помощью математики, которая способна работать только для двух тел? Ответ заключается в том, что звезды находятся настолько далеко, что их  гравитационный эффект можно игнорировать. В пределах Солнечной системы (где все равно находятся тысячи тел) Солнце  настолько больше всех остальных тел, вместе взятых, что его гравитация — это  единственное, что необходимо учитывать с  самого начала. Например, орбиту Земли можно сначала рассчитать так, словно кроме нас существует одно только Солнце. Далее, во время бега вокруг Солнца Венера иногда оказывается впереди Земли, а иногда — позади. Когда она впереди, ее  гравитационное притяжение тянет вперед и немного ускоряет Землю. Когда Венера позади, она чуть-чуть замедляет Землю. Это  принимают во внимание, и расчеты земной орбиты уточняются. Затем учитывают воздействие Марса, принимают во внимание влияние Луны и так далее.

Небольшие воздействия на орбиту  планеты, объясняемые гравитационным  притяжением других планет, называются  возмущениями или пертурбациями.

При расчетах орбиты Урана учитывалось влияние притяжения планет-гигантов,  Юпитера и Сатурна. Это были единственные  известные планеты, которые были достаточно велики и находились достаточно близко к Урану, чтобы заметно изменить его орбиту. Дело в том, что размер возмущений зависит от массы планеты, которая это возмущение вызывает. Возможно, цифры для размеров Юпитера и Сатурна оказались неточными.

Быстрый переход