Предположим, через каждое деление на вертикальной оси, то есть на оси действительных чисел, мы проводим горизонтальную линию. Проводим линию через деление +1, и на всей протяженности этой линии значение действительного числа равно +1. Следующую горизонтальную линию проводим через +2, и на всей протяженности этой линии значение действительного числа равно +2. Следующую горизонтальную линию проводим через -3, и на всей протяженности этой линии значение действительного числа равно -3. Таких линий можно провести сколь угодно много.
Такую же процедуру можно осуществить и с горизонтальной осью, то есть с осью мнимых чисел. Через каждое деление на горизонтальной оси, то есть на оси мнимых чисел, мы проводим вертикальную линию. Так же, как и в прошлом случае на всей протяженности линии, проведенной через деление +1i, значение мнимого числа равно +1i; на всей протяженности линии, проведенной через деление +2i, значение мнимого числа равно +2i; а на всей протяженности линии, проведенной через деление -5i, значение мнимого числа равно -5i.
Теперь мы получили своеобразный шаблон шахматной доски, на котором для каждой линии, соответствующей мнимому числу, существует линия, соответствующая действительному числу, и наоборот, причем эти линии пересекаются.
Теперь мы сможем найти ответ на вопрос, чему равна сумма 1 + i. Число, соответствующее 1 + i, — это точка пересечения линий +1 и +i на нашем шаблоне. Поскольку расстояния между делениями на обеих осях одинаковы, 1 + i представляет собой число в направлении северо- восток. Точно так же и 2 + 2i, 3 + 3i, 4 + + 4i и так далее.
Число, подобное числу 1 - i, можно представить как +1 + (-i), и оно будет на нашем шаблоне представлять собой точку пересечения прямых +1 и -i, то есть в направлении северо-запад. Точно так же -1 + i — это юго-восток, а -1 - i — это юго-запад.
Другие направления можно представить такими числами, как 15 + 2i, -7 - 3i и так далее. По сути дела, каждая точка на нашем шаблоне (который, как вы уже догадались, можно расширять бесконечно) представляет собой какое-то число, которое является суммой действительного и мнимого числа. Более того, положение точки на шаблоне может соответствовать выражению, содержащему десятичную дробь или иррациональное число, например 9,54 + 0,015i, или 2√7 + -5√2i.
Числа, подобные тем, что представлены выше, состоящие из действительной и мнимой частей, называются комплексными. Любое действительное или мнимое число может быть представлено в виде комплексного, то есть 42 = 42 + 0i, a 5i = 0 + 5i.
Комплексные числа представляют интерес не только для инженеров и ученых, они представляют и чисто практический интерес в обыденной жизни, поскольку, в отличие от обычных чисел, указывающих только величину, они указывают также и направление.
Приведем пример, который продемонстрирует вам роль комплексных чисел. Рассмотрим такое физическое понятие, как сила. Сила может представлять собой толкающее усилие или тянущее усилие. Толкающее усилие — это положительная величина, тянущее — отрицательная. Кроме того, сила может изменяться по величине. Таким образом, мы можем использовать для величины силы действительные числа.
Но, кроме того, сила может быть направлена в разных направлениях. И толкающее усилие, и тянущее усилие могут быть направлены вверх, вниз, вбок и так далее. Выразить величину силы с учетом направления можно при помощи комплексных чисел. Таким образом, число i, которое большинству людей, не связанных с математикой, представляется таинственным, но совершенно бесполезным понятием, имеет простое практическое применение. Например, в области электроники никакая математическая обработка данных невозможна без применения комплексных чисел. Величина переменного тока меняется как по величине, так и по направлению, и для ее описания необходимо использовать комплексные числа.
Комплексные числа можно складывать и вычитать по таким же правилам, как обычные числа, причем действительные и мнимые числа складываются и вычитаются отдельно. |