Например, если к (+2 - 4i) прибавить (-5 + 7i), то получим (-3 + 3i). Если из ( + 2 - 4i) отнять (-5 + 7i), то получим (-7 + 11i). (Это можно продемонстрировать на нашем шаблоне, так как обычное сложение и вычитание можно показать на оси север-юг. Думаю, что теперь вы сможете это сделать самостоятельно.)
Вот при умножении комплексных чисел мы столкнемся с большими трудностями, чем в случае умножения действительных чисел. При умножении 35 на 28, как я вам уже объяснил в третьей главе, мы разбиваем числа на разряды, то есть 35 = = 30 + 5, 28 = 20 + 8. Затем числа перемножаются, каждое слагаемое одной части на каждое слагаемое другой части, а результаты умножения складываются.
Точно так же производят операцию умножения с комплексными числами. Для того чтобы умножить (3 + 5i) на (6 + i), нужно составить такую схему:
Стрелками показано, как перемножаются составные части комплексных чисел. В соответствии со схемой:
3 × 6 = 18, 3 × i = 3i, 5i × 6 = 30i и 5i × i = 5i<sup>2</sup> = -5, поскольку i<sup>2</sup> равно -1.
Два из промежуточных результатов являются действительными числами, и их можно сложить, то есть 18 — 5 = 13. Другие две составляющие являются мнимыми числами, и их также можно сложить: 30i + 3i = 33i. Таким образом, результатом умножения является комплексное число 13 + 33i.
Другие арифметические операции также можно продемонстрировать при помощи аналогичной схемы. Таким образом, мы видим, что с комплексными числами можно работать по тем же правилам, что и с обычными числами, а значит, комплексные числа больше не являются для нас таинственными и непостижимыми.
Область комплексных чисел дает возможность рассмотреть некоторые сложные случаи при извлечении корней степени больше 2.
Мы с вами уже знаем, что √+1 равен +1 или -1, √-1 равен + i или -i.
А чему равен корень четвертой степени из +1 (<sup>4</sup>√+1)? Очевидно, что (+1) × (+1) × (+1) × ( + 1) = +1, то есть +1 — это один из корней четвертой степени из +1. Точно так же (-1) × (-1) × (-1) × (-1) = +1, то есть +1 — это также один из корней четвертой степени из +1. Но мы еще не перебрали все варианты. Как насчет выражения (+i) × (+i) × (+i) × (+i)? Результат перемножения (-i) × (-i) — это -1. Следовательно, (-i) × (-i) × (-i) × (-i) = (-1) × (-1) = +1. Это означает, что +i — это третий корень четвертой степени из +1. Точно так же мы можем показать, что —i — это четвертый корень четвертой степени из +1.
Следовательно, наша задача имеет следующий ответ: (<sup>4</sup>√1) = +1, -1, +i, -i. Точно так же мы можем показать, что (<sup>4</sup>√-1) равен +√+i, -√+i, +√-i, или -√-i, то есть эта задача имеет четыре равноценных решения.
А что же такое √+i? Ответ прост. (√+i) — это такое число, которое, будучи умножено на себя самое, дает i. Поэтому (+√+i) × (+√+i) = +i Следовательно, (+√+i) × (-√+i) × (+√-i) × (-√-i) = (+ i) × (+ i) = -1.
Следовательно, (+√+i) является одним из корней четвертой степени из (-1), другими корнями являются -√+i, +√-i и -√-i.
Точно таким же образом можно показать, что любое число имеет четыре корня четвертой степени.
Мы показали, что каждое число имеет два квадратных корня и четыре корня четвертой степени. Можно предположить также, что каждое число имеет три корня третьей степени, пять корней пятой степени, шесть корней шестой степени, сорок пять корней сорок пятой степени и так далее. Это утверждение абсолютно верно, но чтобы его доказать, потребуется сложный математический аппарат, которым мы не владеем, поэтому пока примем его на веру. |