Непременно.
Сократ. А попробуй сказать, сколько в такой стороне, по-твоему, будет футов?
Раб. Три фута.
Сократ. Если она должна иметь три фута, то не надо ли нам прихватить половину
вот этой [двухфутовой] стороны -- тогда и выйдет три фута? Здесь -- два фута, да
отсюда один; и с другой стороны так же: здесь -- два фута и один отсюда. Вот и
получится фигура, о которой ты говоришь. Не так ли?
Раб. Так.
Сократ. Но если у нее одна сторона в три фута и другая тоже, не будет ли во всей
фигуре трижды три фута?
Раб. Очевидно, так.
Сократ. А трижды три фута -- это сколько?
Раб. Девять.
Сократ. А наш удвоенный квадрат сколько должен иметь футов, ты знаешь?
Раб. Восемь.
Сократ. Вот и не получился у нас из трехфутовых сторон восьмифутовый квадрат.
Раб. Не получился.
Сократ. Но из каких же получится? Попробуй сказать нам точно. И если не хочешь
считать, то покажи.
Раб. Нет, Сократ, клянусь Зевсом, не знаю.
Сократ. Замечаешь, Менон, до каких пор он дошел уже в припоминании? Сперва он,
так же как теперь, не знал, как велика сторона восьмифутового квадрата, но думал
при этом, что знает, отвечал уверенно, так, словно знает, и ему даже в голову не
приходила мысль о каком-нибудь затруднении. А сейчас он понимает, что это ему не
под силу, и уж если не знает, то и думает, что не знает.
Менон. Твоя правда.
Сократ. И разве не лучше теперь обстоит у него дело с тем, чего он не знает?
Менон. По-моему, лучше.
Сократ. Так разве мы нанесли ему хоть какой-нибудь вред, запутав его и поразив
оцепенением, словно скаты?
Менон. По-моему, ничуть.
Сократ. Значит, судя по всему, мы чем-то ему помогли разобраться, как обстоит
дело? Ведь теперь, не зная, он с удовольствием станет искать ответа, а раньше
он, беседуя с людьми, нередко мог с легкостью подумать, будто говорит правильно,
утверждая, что удвоенный квадрат должен иметь стороны вдвое более длинные.
Менон. Да, похоже, что так.
Сократ. Что же, по-твоему, он, не зная, но думая, что знает, принялся бы искать
или изучать это до того, как запутался, и, поняв, что не знает, захотел узнать?
Менон. По-моему, нет, Сократ.
Сократ. Значит, оцепенение ему на пользу?
Менон. Я думаю.
Сократ. Смотри же, как он выпутается из этого затруднения, ища ответ вместе со
мной, причем я буду только задавать вопросы и ничему не стану учить его. Будь
начеку и следи, не поймаешь ли меня на том что я его учу и растолковываю ему
что-нибудь, вместо того чтобы спрашивать его мнение.-- А ты скажи мне: не это ли
у нас четырехфутовый квадрат? Понимаешь?
Раб. Это.
Сократ. А другой, равный ему, квадрат мы можем к нему присоединить?
Раб. Конечно.
Сократ. А еще третий, равный каждому из них?
Раб. Конечно.
Сократ. А вот этот угол мы можем заполнить, добавив точно такой же квадрат?
Раб. Ну а как же?
Сократ. И тогда получатся у нас четыре равные фигуры?
Раб. Получатся.
Сократ. Дальше. Во сколько раз всї вместе будет больше первого квадрата?
Раб. В четыре.
Сократ. А нам нужно было получить квадрат в два раза больший, помнишь?
Раб. Помню.
Сократ. Вот эта линия, проведенная из угла в угол, разве она не делит каждый
квадрат пополам?
Раб. |