Изменить размер шрифта - +

Обычно, когда мы говорим о скорости звука, мы подразумеваем скорость его распространения сквозь воздух. Однако звуковые колебания распространяются сквозь любое материальное тело, и скорость их распространения изменяется в зависимости от природы этого тела. Межмолекулярные силы в жидкостях и твердых телах гораздо более сильные, чем в газах, а значит, восстановление их после сжатия происходит гораздо быстрее. Следовательно, звук распространяется в жидкостях и твердых телах с гораздо большей скоростью, чем в любом газе, и чем более твердой материей обладает тело (и, следовательно, с чем более сильными межмолекулярными силами), с тем большей скоростью звук распространяется сквозь него. В воде звуковые колебания распространяются со скоростью 1450 метров в секунду (3240 миль в час), а в металле — со скоростью приблизительно 5000 метров в секунду (или 11 200 миль в час).

 

 

Музыкальная шкала

 

В музыкальных инструментах звуки различной высоты тона могут быть воспроизведены посредством удара или щипка за струны различной длины и толщины, как это делается на фортепьяно или арфе, или, как в случае со скрипкой, используя немного струн, но изменяя их эффективную длину, зажимая пальцем один конец струны в различных точках, или позволяя звуковой волне заполнять трубки, которые могут удлиняться или сокращаться в зависимости от положения руки исполнителя, как это делается в тромбоне; или закрывая и открывая дополнительные объемы в трубке, закрывая отверстие пальцем, как во флейте, или нажимая на вентиль, как в трубе.

Когда на каком-либо инструменте берутся две ноты вместе или одна за другой, их комбинация кажется нам иногда приятной, а иногда — неприятной. Это, конечно, вопрос очень субъективный, к тому же основанный на культурном наследии слушателя, поскольку мы любим то, к чему мы привыкли, и множество типов музыки, начиная от рок-н-ролла и кончая, например, традиционной японской, могут показаться неприятными для непосвященного, но весьма нравятся их приверженцам. Однако если мы ограничимся рассмотрением «серьезной» классической западной музыки, то мы можем прийти к некоторым обобщениям и заключениям относительно ее.

Если две ноты прозвучали вместе, то результатом этого не являются два раздельных ряда звуковых волн, каждый из которых путешествует сквозь воздух независимо от другого, — мы имеем результирующую волну, которая произошла от сложения двух волн вместе.

Чтобы еще упростить, предположим, что мы каким-то образом создали две звуковых волны, каждая из которых одной и той же частоты, но звучит таким образом, что отстает от другой на половину длины волны. Всякий раз, когда одна звуковая волна формирует область сжатия в одной точке, другая — формирует там же область разрежения, и наоборот. Два эффекта взаимоуничтожают друг друга, и воздух не двигается. В результате взятые вместе два звука производят тишину; такое явление называется «интерференцией». Трудно представить это себе, если мы говорим о продольных волнах. Однако если изобразить продольные волны как аналогичные им поперечные волны (поскольку для данной цели такая замена вполне приемлема), то интерференцию достаточно легко изобразить. Во всех случаях, когда синусоида одной звуковой волны идет вверх, синусоида другой звуковой волны идет вниз, и если сложить эти два участка, то в результате мы получим ровную линию, то есть никакой волны вообще.

С другой стороны, если две волны одной и той же частоты звучат точно в фазе, они складываются друг с другом, так что сжимаемые области еще больше сжимаются, а разрежаемые области разрежаются еще больше, чем это бы было, если бы любой из этих звуков воспроизводился в одиночку. На аналогичной поперечной волне гребни и впадины отдельных волн совпадают и суммарные гребни будут выше, а впадины глубже, чем у любой из них. Наше ухо услышит один звук той же высоты тона, но более громкий. Это явление называется «укреплением» (reinforcement).

Быстрый переход