Изменить размер шрифта - +

Безусловно, представление о теплоте как об атомном движении несколько более трудно для восприятия, чем представление теплоты как жидкости. В последнем случае мы можем думать о таких знакомых объектах, как водопады; в первом же лучшее, что мы можем представить, — это набор совершенно упругих бильярдных шаров, подпрыгивающих в относительно прочно замкнутой камере. Согласно бритве Оккама, из предложенных двух теорий, объясняющих факты, следует выбрать наиболее простую. Однако бритва Оккама применяется должным образом только тогда, когда две или более теории объясняют с равной справедливостью все относящиеся к ним факты. В существующем случае — это не так.

Если мы ограничиваемся только жидкостной теорией теплового потока, то, конечно, для восприятия она проще, чем атомное движение. Однако, если нам потребуется объяснить воздействие теплоты на давление и объем в газах, если нам нужно будет объяснять явления удельной теплоемкости, латентной теплоты и множество других явлений, жидкостная теория становится достаточно трудной к использованию. Со своей стороны, атомная теория движения не только может объяснить тепловой поток, но также и все другие явления, в которые вовлечена теплота.

Представим себе, например, что у нас имеются горячее и холодное тела, находящиеся в контакте. Молекулы в горячем теле в среднем перемещаются или вибрируют более быстро, чем молекулы в холодном теле. Безусловно, молекулы в обоих телах обладают неким диапазоном скоростей: и в холодном теле могут существовать некоторые молекулы, которые перемещаются быстрее, чем некоторые молекулы в горячем теле, но это — исключительная ситуация. Когда молекула горячего тела («Н-молекула») сталкивается с таковой холодного тела («С-молекулой»), велика вероятность того, что из этих двух именно Н-молекула перемещается более быстро. По-другому мы можем сказать это так, что если большое число Н-молекул сталкивается с большим числом С-молекул, то будут несколько случаев, когда скорость перемещения С-молекулы больше, чем скорость перемещения Н-молекулы, с которой она сталкивается, но абсолютное превосходство составляют случаи, когда скорость перемещения Н-молекулы является большей из двух.

Теперь давайте рассмотрим ситуацию, когда два перемещающихся объекта сталкиваются и рикошетят; скорости обоих объектов могут изменяться в огромном диапазоне значений и направлений. Однако эти изменения могут быть сгруппированы в два основных класса. В первом случае более медленный объект в результате столкновения потеряет скорость, тогда как более быстрый объект увеличит скорость. Результатом этого будет то, что более медленный объект будет перемещаться еще медленнее, а более быстрый объект будет перемещаться еще быстрее. Во втором случае в результате столкновения более медленный объект получит дополнительную скорость, тогда как более быстрый объект эту скорость потеряет. В первом классе столкновений значения скоростей станут больше, во втором классе — они уменьшатся.

Однако в большинстве случаев столкновение принадлежит ко второму классу, а не к первому. Это означает, что если мы рассмотрим большое количество случайных столкновений, при которых скорость после столкновения перераспределяется тем или другим способом, то обнаружим, что число столкновений второго класса, при котором суммарные скорости уменьшаются, превалирует над числом столкновений первого класса, при котором они увеличиваются. Случайные столкновения вызывают «среднее уменьшение» скоростей.

Когда горячее и холодное тела вступают в контакт, большое количество Н-молекул сталкивается с большим количеством С-молекул; результатом этого является то, что после столкновений Н-молекулы в целом перемещаются медленнее, а С-молекулы перемещаются быстрее. Это означает, что Н-молекулы стали более холодными, С-молекулы — более теплыми, то есть от Н-молекул к С-молекулам произошел отток теплоты. Температура горячего тела в месте контакта снижается, а температура холодного тела в месте контакта повышается.

Быстрый переход