Изменить размер шрифта - +
Кроме того, увеличение энтропии двигателя — гораздо больше, чем уменьшение ее в камере холодильника; таким образом, суммарное изменение в энтропии всей системы, представляющей собой камеру рефрижератора плюс его двигатель, говорит об ее увеличении.

Таким же образом уменьшение энтропии, которое происходит при превращении железной руды в железо, меньше, чем увеличение энтропии, которое происходит при горении кокса и других химических реакциях, вызывающих очистку железа. Увеличение энтропии в электрогенераторе, снабжающем электричеством для заряда аккумуляторную батарею, больше, чем уменьшение энтропии непосредственно аккумуляторной батареи по мере ее зарядки. Уменьшение энтропии человека, идущего вверх по холму, меньше, чем увеличение энтропии, которое происходит благодаря химическим реакциям внутри его тканей, которые извлекают химическую энергию из пищевых продуктов и создают усилия, которые требуются человеку для осуществления этого подъема.

Все это истинно и для различных крупномасштабных, планетарного масштаба процессов, которые, как кажется, вызывают уменьшение энтропии. Примерами таких, уменьшающих энтропию явлений являются: нерегулярное нагревание атмосферы, которое вызывает ветер и создает погоду; подъем бесчисленных тонн воды на мили вверх в противодействие силе тяжести, который порождает дождь и создает реки; преобразование растительным покровом планеты углекислого газа, содержащегося в атмосфере, в сложные органические соединения, которые являются основой и бесконечной пищевой цепочки Земли, и таких энергоносителей, как уголь и нефть. Именно благодаря всем этим явлениям свободная энергия Земли остается приблизительно на одном и том же уровне за всю историю ее существования; эти явления также объясняют, почему мы можем не опасаться в обозримом будущем того, что свободная энергия будет исчерпана.

И все же все эти явления не должны рассматриваться отдельно друг от друга, поскольку все они имеют место за счет достигающей Земли солнечной энергии. Именно солнечная энергия нагревает атмосферу и испаряет воду, именно она служит движущей силой для фотосинтеза различных покрывающих Землю растений. В процессе излучения теплоты и света Солнце подвергается гораздо более обширному увеличению энтропии, чем то относительно малое уменьшение, которое происходит благодаря земным планетарным явлениям.

Иными словами, если мы включим в пределы нашей системы все действия, которые затрагивают ее, то окажется, что суммарное значение ее энтропии всегда увеличивается. Если же мы вдруг обнаруживаем уменьшение энтропии системы, что случается достаточно часто, то это означает, что мы исследуем лишь часть системы и не видим ее целиком.

В реальности, на практике мы никогда не можем быть уверенными, что имеем дело с замкнутой системой. Независимо от того, насколько хорошо мы изолируем систему, всегда имеются внешние воздействия — приток энергии и потери энергии — как в систему, так и из нее. На все процессы на Земле воздействует солнечная энергия, и, даже если мы будем рассматривать Землю и Солнце вместе как одну большую систему, все равно останутся гравитационные и радиационные влияния от других планет и даже от других звезд. Мы не сможем убедиться, что имеем дело с действительно замкнутой системой, пока не возьмем для нашей системы нечто меньшее, чем вся Вселенная.

В терминах Вселенной мы можем (как это и сделал Клаузиус) выразить законы термодинамики с предельной общностью. В этом случае первый закон термодинамики звучал бы так: «Полная энергия Вселенной есть величина постоянная», а второй закон термодинамики звучал бы так: «Полная энтропия Вселенной непрерывно возрастает».

Теперь предположим, что Вселенная конечна в своем размере. Тогда она может содержать только некое, конечное, количество энергии. Если энтропия Вселенной (которая является мерой содержания ее связанной, бесполезной энергии, энергии, из которой невозможно извлечь работу) непрерывно увеличивается, то в конечном итоге величина связанной энергии достигнет точки, в которой она равна полной энергии.

Быстрый переход