Изменить размер шрифта - +
Построены большие параболические зеркала, которые захватывают солнечное излучение на большой площади и собирают его воедино. В фокусе солнечных печей достигались температуры до 7000 °С.

Зеркало плавающей кривизны может выдавать странные и смешные искажения изображения, как знает любой, кто побывал в парке аттракционов. Однако хорошее отражение с чистого зеркала неискаженной формы может выглядеть полностью правильным, особенно если края зеркала спрятаны так, чтобы со стороны нельзя было заподозрить его наличие.

Случайный зритель может перепутать изображение и реальность, и на этом основываются некоторые фокусы. Естественно, реальное изображение дразнит еще лучше, чем мнимое. В Бостонском научном музее реальное изображение проецируется таким образом, чтобы казалось, что монеты сыплются в перевернутый кубок вопреки закону тяготения. Зрители (как взрослые, так и дети) без устали подставляют руки туда, где должны быть монеты. Вся их нематериальность не может убедить глаза, что монет здесь нет.

Предположим, что источник света приблизили к зеркалу еще ближе фокусного расстояния. В этом случае отраженные лучи не сходятся и не являются параллельными; они расходятся. Такие расходящиеся лучи, распространяясь с поверхности в пространство, можно рассматривать как сходящиеся, если проследовать по ним за зеркало. В самом деле, если мысленно продолжить лучи сквозь поверхность зеркала в пространство за ним, то они сойдутся в одной точке. И в этой точке вы увидите изображение. Поскольку оно формируется позади зеркала, там, куда свет на самом деле не проникает, то это мнимое изображение, как и на плоском зеркале, и, как в случае с плоским зеркалом, изображение сориентировано верхом кверху.

Уравнение 2.2 можно применить к этой ситуации. Если источник света ближе к зеркалу, чем фокус, то D<sub>0</sub> меньше, чем f, и 1/D<sub>0</sub> должно соответственно быть больше, чем 1/f (Если это для вас не очевидно, то вспомните, что 2 меньше, чем 4, в то время как ½ больше, чем ¼.)

Решив уравнение 2.2 для 1/D<sub>1</sub>, мы получим:

 

Поскольку в рассматриваемом случае 1/D<sub>0</sub> больше, чем 1/f, 1/D<sub>1</sub>, должно иметь отрицательное значение. Отсюда видно, что само по себе D<sub>1</sub> должно быть отрицательной величиной.

Это понятно. В предыдущих обсуждаемых случаях все расстояния измерялись вперед от зеркала. В данном же случае точка, в которой сходятся отраженные лучи и где формируется изображение, находится за зеркалом и соответственно величина должна быть отрицательной.

Уравнение 2.2 применимо не только к вогнутым зеркалам; оно имеет более общее применение.

Представим себе вновь плоское зеркало. Пучок параллельных лучей падает на него вдоль главной оси (за главную ось на плоском зеркале можно принять любую линию нормали) и отражается обратно вдоль нее таким же параллельным. Лучи не встречаются, и соответственно расстояние от зеркала до фокуса бесконечно. Но если f бесконечно, то 1/f должно быть равным нулю, и для плоского зеркала уравнение 2.2 принимает вид:

 

Если решить уравнение 2.4 для D<sub>1</sub>, то выходит, что D<sub>1</sub> = –D<sub>0</sub>. Так как D<sub>0 </sub>(расстояние до отражаемого объекта) всегда должно быть положительно, поскольку для того, чтобы вообще отражаться, предмет должен всегда находиться перед зеркалом, D<sub>1</sub> должно быть отрицательным. Соответственно в случае плоского зеркала изображение всегда должно находиться за зеркалом и быть мнимым. Итак, если D<sub>1</sub>, и D<sub>0 </sub>не равны, то изображение должно находиться далеко за зеркалом, в то время как отражаемый объект находится перед зеркалом.

А что, если у нас выпуклое зеркало? То есть кривое зеркало, посеребренное с вогнутой стороны, так что мы, глядя в него, видим отражение с выпуклой стороны.

Быстрый переход