На самом деле именно представление об «абсолютном верхе» и «абсолютном низе» кажется теперь неправильным. Если кто-то всерьез будет утверждать, что австралийцы ходят, будучи подвешенными за ноги, его засмеют.
Если принять принципы релятивистской Вселенной (в как можно более юном возрасте), вышеописанное тоже не будет казаться противоречащим здравому смыслу.
Равнозначность массы и энергии
В XIX веке химики все больше убеждались, что масса не может ни появляться ниоткуда, ни исчезать в никуда (закон сохранения массы). Однако Лоренцу и Эйнштейну казалось, что масса появляется при увеличении скорости и исчезает при уменьшении скорости. Конечно, изменения массы на обычных скоростях крайне малы, но они есть. Откуда же тогда берется масса и куда исчезает?
Начнем с того, что представим, что к телу определенной массы (m) прикладывается определенная сила (f). В таких условиях тело получает ускорение (a), а из второго закона Ньютона (см. ч. I) можно сделать вывод, что a =f/m. Присутствие ускорения означает, что скорость тела увеличивается, но в старой ньютоновской модели Вселенной это не влияло на массу тела, она оставалась постоянной. Если силу также рассматривать как постоянную, то f/m тоже остается постоянным и a, ускорение, тоже постоянно. В результате такого постоянного ускорения скорость тела (в ньютоновском представлении) будет возрастать неограниченно и достигнет любого значения, которое вы назовете, — надо только дождаться.
В эйнштейновской же Вселенной наблюдатель, измеряющий скорость объекта, к которому прикладывается непрерывная постоянная сила, никогда не сможет увидеть, как скорость этого объекта превысит скорость света в вакууме. Следовательно, хотя его скорость и возрастает под воздействием постоянной силы, эта скорость возрастает все меньше и меньше и по мере приближения к скорости света она увеличивается гораздо меньше. Короче, ускорение тела под влиянием постоянной силы уменьшается по мере увеличения скорости и становится нулевым, когда скорость достигает световой.
Но опять же по второму закону Ньютона масса тела равна силе, к нему прилагаемой, поделенной на ускорение, производимое этой силой, то есть m = f/a. Если сила постоянна, а ускорение уменьшается по мере увеличения скорости, то a уменьшается по мере увеличения скорости, а f — нет; следовательно, f/a увеличивается по мере увеличения скорости. А это означает, поскольку m = f/a, что масса увеличивается вместе со скоростью. (Так увеличение массы по мере увеличения скорости можно вывести из эйнштейновского допущения о постоянстве скорости света в вакууме.)
Подвергаясь воздействию силы, тело получает кинетическую энергию, которая равна половине его массы, умноженной на квадрат его скорости (e<sub>k </sub>= ½mv<sup>2</sup>, см. ч. I). С ньютоновской точки зрения это увеличение кинетической энергии вытекает только из увеличения скорости, поскольку масса считается неизменной. С эйнштейновской же точки зрения это увеличение кинетической энергии является результатом увеличения как скорости, так и массы.
В случаях, когда масса не задействована в изменениях энергии (как гласит точка зрения Ньютона), естественно представлять себе массу как что-то не имеющее отношения к энергии и думать, что, с одной стороны, существует закон сохранения энергии, а с другой — закон сохранения массы и оба закона самостоятельны.
Если же масса меняется и, таким образом, является тесно задействованной в процессах изменения энергии (как это представлял Эйнштейн), естественно думать о массе и энергии как о различных аспектах одного и того же, поэтому закон сохранения энергии будет включать в себя и массу. (Чтобы это стало абсолютно понятным в свете наших предыдущих выводов, мы иногда говорим о законе сохранения массы-энергии, но слово «масса» не является действительно обязательным. |